Journal of Molecular Evolution

, Volume 42, Issue 6, pp 676–684 | Cite as

Molecular genetics and evolution of stomach and nonstomach lysozymes in the hoatzin

  • Janet R. Kornegay
Articles

Abstract

Multiple genes of the hoatzin encoding stomach lysozyme c and closely related members of this calcium-binding lysozyme c group were cloned from a genomic DNA library and sequenced. There are a minimum of five genes represented among these sequences that encode two distinct groups of protein sequences. One group of three genes corresponds to the stomach lysozyme amino acid sequences, and the remaining genes encode predicted proteins that are more basic in character and share several sequence identities with the pigeon egg-white lysozyme rather than with the hoatzin stomach lysozymes. Despite these structural similarities between some of the hoatzin gene products and the pigeon lysozyme, phylogenetic analyses indicate that all of the hoatzin sequences are closely related to one another. This is borne out by the relatively small genetic distances even in the intronic regions, which are not subject to the selective pressures operating on the coding regions of the stomach lysozymes. These results suggest that multiple gene duplication events have occurred during the evolution of hoatzin lysozymes.

Key words

Hoatzin Stomach lysozyme Foregut fermentation Gene sequences Gene duplication Genetic variation Lysozyme evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise JC, Nelson WS, Sibley CG (1994) Why one-kilobase sequences from mitochondrial DNA fail to solve the hoatzin phylogenetic enigma. Mol Phylo Evol 3:175–184Google Scholar
  2. Dautigny A, Prager EM, Pham-Dinh D, Jollès J, Pakdel F, Grinde B, Jollès P (1991) cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin. J Mol Evol 32:187–198PubMedGoogle Scholar
  3. Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. I. Distribution and catalytic properties. J Biol Chem 259:11607–11616PubMedGoogle Scholar
  4. Gilbert W (1978) Why genes in pieces? Nature 271:501CrossRefPubMedGoogle Scholar
  5. Grajal A, Strahl SD, Parra R, Dominguez MG, Neher A (1989) Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science 245:1236–1238Google Scholar
  6. Haldane JBS (1932) The causes of evolution. Harper & Row, New YorkGoogle Scholar
  7. Hedges SB, Simmons MD, van Dijk MAM, Caspers G-J, de Jong WW, Sibley CG (1995) Phylogenetic relationships of the hoatzin, an enigmatic South American bird. Proc Natl Acad Sci USA 92: 11662–11665PubMedGoogle Scholar
  8. Irwin DM (1995) Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function. J Mol Evol 41:299–312PubMedGoogle Scholar
  9. Irwin DM, Sidow A, White RT, Wilson AC (1989) Multiple genes for ruminant lysozymes. In: Smith-Gill SJ, Sercarz EE (eds) The immune response to structurally defined proteins: the lysozyme model. Adenine Press, Schenectady, NY, pp 73–85Google Scholar
  10. Irwin DM, Prager EM, Wilson AC (1992) Evolutionary genetics of ruminant lysozymes. Anim Genet 23:193–202PubMedGoogle Scholar
  11. Irwin DM, White RT, Wilson AC (1993) Characterization of the cow stomach lysozyme genes: repetitive DNA and concerted evolution. J Mol Evol 37:355–366CrossRefPubMedGoogle Scholar
  12. Irwin DM, Yu M, Wen Y (1996) Isolation and characterization of vertebrate lysozyme genes. In: Jolles P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser Verlag, Basel, pp 225–242Google Scholar
  13. Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264:11387–11393PubMedGoogle Scholar
  14. Irwin DM, Wilson AC (1990) Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem 265:4944–4952PubMedGoogle Scholar
  15. Jung A, Sippel AE, Grez M, Schütz G (1980) Exons encode functional and structural units of chicken lysozyme. Proc Natl Acad Sci USA 77:5759–5763PubMedGoogle Scholar
  16. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  17. Kornegay JR (1994) Evolution of avian lysozymes. PhD thesis, University of California, BerkeleyGoogle Scholar
  18. Komegay JR, Schilling JW, Wilson AC (1994) Molecular adaptation of a leaf-eating bird: stomach lysozyme of the hoatzin. Mol Biol Evol 11:921–928Google Scholar
  19. Li W-H, Graut D (1991) Fundamentals of molecular evolution. Sinauer, Sunderland, MAGoogle Scholar
  20. Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342PubMedGoogle Scholar
  21. Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution, version 3.0. Sinauer, Sunderland, MAGoogle Scholar
  22. Miller AH (1953) A fossil hoatzin from the Miocene of Colombia. Auk 70:484–489Google Scholar
  23. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, BerlinGoogle Scholar
  24. Olson SL (1985) The fossil record of birds. Avian Biol 8:79–238Google Scholar
  25. Pahud J-J, Widmer F (1982) Calf rennet lysozyme. Biochem J 201: 661–664PubMedGoogle Scholar
  26. Prager EM (1996) Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression, and gene number. In: Jollès P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser Verlag, Basel, pp 323–346Google Scholar
  27. Prager EM, Jollès, P (1996) Animal lysozymesc andg: an overview. In: Jolles P (ed) Lysozymes: model enzymes in biochemistry and biology. Birkhäuser Verlag, Basel, pp 9–31Google Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  29. Satta Y, O'hUigin C, Takahata N, Klein J (1993) The synonymous substitution rate of the major histocompatibility complex loci in primates. Proc Natl Acad Sci USA 90:7480–7484PubMedGoogle Scholar
  30. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. A study in molecular evolution. Yale University Press, New Haven, CTGoogle Scholar
  31. Stewart C-B, Schilling JW, Wilson AC (1987) Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404PubMedGoogle Scholar
  32. Swanson KW, Irwin DM, Wilson AC (1991) Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. J Mol Evol 33:418–425CrossRefPubMedGoogle Scholar
  33. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1.l. Illinois, Natural History Survey, Champaign, ILGoogle Scholar
  34. Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247CrossRefGoogle Scholar
  35. Wistow G (1993) Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18:301–306CrossRefPubMedGoogle Scholar
  36. Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • Janet R. Kornegay
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Roche Molecular SystemsAlamedaUSA

Personalised recommendations