On physiological edema in man's lower extremity

  • C. Stick
  • P. Stöfen
  • E. Witzleb


To examine whether the so-called musculovenous pump counteracts the development of interstitial edema in the lower extremities of man in the upright position, the volume changes in the calf which occured during twenty minutes of rhythmic muscular exercise were measured in twenty-three subjects by impedance-plethysmography. The results were compared with the volume increase found during quiet relaxed standing for the same length of time. Contrary to the hypothesis, and edema-protective effect of the musculovenous pump could only be shown in about half the number of the subjects. In the others, muscular exercise led to increases in calf volume which were higher than those measured in the normal upright position. These results show that the calf muscle pump does not generally have a edemaprotective effect but rather that muscle contractions also activate mechanisms which stimulate the extravasation of fluid. p ]In a second test-series with twenty subjects, changes in calf volume were measured during the course of the day. In nearly all cases, the calf volume was greater in the evening than in the morning. It could be shown that the volume increases in the evening are caused by an increase in extravascular fluid. Compared to the increase in extravascular volume occuring during twenty minutes, in a normal upright position, the accumulation of extravascular fluid during the day is, however, remarkably low. Although it is still unknown how insterstitial edema in man's lower extremities is prevented during the day, these findings lead to the hypothesis that the edema-preventing mechanisms, for instance the muscle-lymphpump, do not become maximally effective until a certain volume has accumulated in the interstitial space.


Edema-preventing mechanisms Orthostasis Muscle pump Interstitial fluid Transcapillary filtration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnoldi CC (1965) Venous pressure in the leg of healthy human subjects at rest and during muscular exercise in the nearly erect position. Acta Chir Scand 130:570–583PubMedGoogle Scholar
  2. Asmussen E (1942) The distribution of the blood between the lower extremities and the rest of the body. Acta Physiol Scand 5:31–38Google Scholar
  3. Asmussen E, Christensen EH, Nielsen M (1939a) Pulsfrequenz und Körperstellung. Skand Arch Physiol 81:190–203Google Scholar
  4. Asmussen E, Christensen EH, Nielsen M (1939b) über die Kreislaufinsuffizienz in stehender Stellung bei normalem arteriellem Druck und herabgesetztem Minutenvolumen. Skand Arch Physiol 81:214–224Google Scholar
  5. Atzler E, Herbst R (1923) Die Schwankungen des Fu\volumens und deren Beeinflussung. Z Ges Exp Med 38:137–152Google Scholar
  6. Aukland K (1973) Autoregulation of interstitial fluid volume. Scand J Clin Lab Invest 31:247–254PubMedGoogle Scholar
  7. Barcroft H, Dornhorst AC (1949) Blood flow through the human calf during rhythmic exercise. J Physiol [Lond] 109:402–411Google Scholar
  8. Engeset A, Olszewski W, Jaeger PM, Sokolowski J, Theodorsen L (1977) Twenty-four hour variation in flow and composition of leg lymph in normal men. Acta Physiol Scand 99:140–148PubMedGoogle Scholar
  9. Entrup R, Paiewonsky D, Hughes M, Jue J, Bittar D, Wegria R (1966) Effect of posture on formation and evacuation of lymph. Am J Physiol 210:943–949PubMedGoogle Scholar
  10. Fadnes HO, Reed RK, Aukland K (1978) Mechanisms regulating interstitial fluid volume. Lymphology 11:165–169PubMedGoogle Scholar
  11. Folkow B, Haglund U, Jodal M, Lundgren O (1971) Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol Scand 81:157–163PubMedGoogle Scholar
  12. Gauer OH (1972) Kreislauf des Blutes. In: Gauer OH, Kramer K, Jung R, Physiologie des Menschen, Bd. 3 Herz und Kreislauf. Urban & Schwarzenberg, München, p 250Google Scholar
  13. Henriksen O, Sejrsen P (1977) Local reflex in microcirculation in human sceletal muscle. Acta Physiol Scand 99:19–26PubMedGoogle Scholar
  14. Henry JP, Gauer OH (1950) The influence of temperature upon venous pressure in the foot. J Clin Invest 29:855–861PubMedGoogle Scholar
  15. Hildebrandt G (1960) Die Durchblutung der menschlichen Wadenmuskulatur bei orthostatischer Belastung. Pflügers Arch 272:6–7CrossRefGoogle Scholar
  16. Höjensgard C, Stürup H (1953) Static and dynamic pressures in superficial and deep veins of the lower extremity in man. Acta Physiol Scand 27:49–67Google Scholar
  17. Hörig C (1976) Impedanzplethysmographische Untersuchungen von VolumenÄnderungen an den unteren ExtremitÄten bei Lagewechsel. Dissertation, KielGoogle Scholar
  18. Immich H (1974) Medizinische Statistik. Schattauer, Stuttgart, p 180Google Scholar
  19. Kirsch K, Merke J, Hinghofer-Szalkay H (1980) Fluid volume distribution within superficial shell tissues along body axis during changes of body posture in man. Pflügers Arch 383:195–201PubMedGoogle Scholar
  20. Kriessmann A (1975) Periphere phlebodynamometrie. VASA [Suppl. 4]Google Scholar
  21. Krug H, Schlicher L (1960) Die Dynamik des venösen Rückstromes. VEB Thieme, Leipzig, p 42 ffGoogle Scholar
  22. Looke H (1936) über die VolumenÄnderungen der unteren ExtremitÄten unter verschiedenen Bedingungen. Arb Physiol 9:496–504Google Scholar
  23. Ludbrook J, Loughlin J (1964) Regulation of volume in postarteriolar vessels of the lower limbs. Am Heart J 67:493–507CrossRefPubMedGoogle Scholar
  24. Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissue during exercise. Acta Physiol Scand 85:258–269PubMedGoogle Scholar
  25. Marées H de (1974) HÄmodynamik der orthostatischen Sofortregulation. In: Dengler HD (ed) Das Orthostasesyndrom, Schattauer, Stuttgart pp 25–38Google Scholar
  26. Mellander S, öberg B, Odelraum H (1964) Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol Scand 61:34–48PubMedGoogle Scholar
  27. Nicolaysen G, Noddeland H, Aukland K (1980) Plasma colloid osmotic pressure on venous blood from the foot of man in the sitting position. Acta Physiol Scand 109:C4Google Scholar
  28. Nyboer J (1970) Electrical impedance plethysmography. 2ndedition. Springfield, Illinois, p 34Google Scholar
  29. Olszewski W, Engeset A, Jaerger PM, Sokolowski J, Theodorsen L (1977) Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 99:149–155PubMedGoogle Scholar
  30. Pollack AA, Wood EH (1949) Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol 1:649–662Google Scholar
  31. Reeves JT, Grover RF, Blount SG, Filley GF (1961) Cardiac output response to standing and treadmill walking. J Appl Physiol 16:283–288PubMedGoogle Scholar
  32. Rieck A, Hildebrandt G (1974) über tagesrhythmische VerÄnderungen des Beinvolumens bei orthostatischer Belastung. Z Phlebol Proktol 3:1–13Google Scholar
  33. Rieckert H (1970) Die HÄmodynamik des venösen Rückflusses aus der unteren ExtremitÄt. Arch Kreislauf 62:293–318Google Scholar
  34. Sachs L (1974) Angewandte Statistik. 4. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. Schnizer W, Klatt H, Baeker H, Rieckert H (1978) Vergleich von szintigraphischen und plethysmographischen Messungen zur Bestimmung des kapillÄren Filtrationskoeffizienten in der menschlichen ExtremitÄt. Basic Res Cardiol 73:77–84CrossRefPubMedGoogle Scholar
  36. Schnizer W, Hinneberg H, Moser H, Küper K (1979) Intra- und extravascular volume changes in the human forearm after static hand grip exercise. Eur J Appl Physiol 41:131–140CrossRefGoogle Scholar
  37. Sejrsen P, Henriksen O, Paaske WP (1981) Effects of orthostatic blood pressure changes upon capillary filtration-absorption rate in the human calf. Acta Physiol Scand 111:287–291PubMedGoogle Scholar
  38. Sejrsen P, Henriksen O, Paaske WP, Nielsen SL (1981) Duration of increase in vascular volume during venous stasis. Acta Physiol Scand 111:293–298PubMedGoogle Scholar
  39. Starling EH (1886) On the absorption of fluids from the connective tissue spaces. J Physiol 19:312–326Google Scholar
  40. Stick C (1981) Zur Problematik der Messung filtrationsbedingter VolumenÄnderungen der ExtremitÄten mit der Impedanzplethysmographie. Eur J Appl Physiol 47:405–418CrossRefGoogle Scholar
  41. Taylor AE (1981) Capillary fluid filtration. Starling forces and lymph flow. Circ Res 49:557–575PubMedGoogle Scholar
  42. Taylor AE, Gibson H, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of insterstitial fluid volume. Lymphology 6:192–208PubMedGoogle Scholar
  43. Waterfield RL (1931) The effect of posture on the volume of the leg. J Physiol [Lond] 72:121–131Google Scholar
  44. White JC, Field ME, Drinker CK (1933) On the protein content and normal flow of lymph from the foot of the dog. Am J Physiol 103:34–44Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • C. Stick
    • 1
  • P. Stöfen
    • 1
  • E. Witzleb
    • 1
  1. 1.Institut für angewandte Physiologie und medizinische Klimatologie der Christian-Albrechts-UniversitÄt KielKielGermany

Personalised recommendations