Advertisement

The Histochemical Journal

, Volume 28, Issue 1, pp 13–23 | Cite as

Histochemical analysis of insulin-like growth factor-1 binding sites in mouse normal and expermmentally induced arthritic articular cartilage

  • Pernette J. Verschure
  • Jan Van Marle
  • Leo A. B. Joosten
  • Wim B. Van den Berg
Papers

Summary

Insulin-like growth factor-1 (IGF-1) plays a key role in regulation of chondrocyte metabolism. We examined the localization of IGF-1 binding sites on chondrocytes in cartilage from normal and experimentally induced arthritic mouse knee joints. Cryostat sections from patellar cartilage were incubated either with IGF-1 receptor antibody or biotinylated IGF-1. Subsequently confocal laser scanning microscopy was applied to compare the two staining procedures qualitatively and quantitatively. This approach allowed detailed analysis of membrane-associated and intracellular staining. Using IGF-1 receptor antibody, IGF-1 receptors were found on the cell membrane of chondrocytes in the middle and deeper cartilage zones, whereas intracellular staining was highest in chondrocytes of superficial zones. After incubation with biotinylated IGF-1, distinct membrane staining was not present and fluorescence was localized homogeneously in themiddle and deeper zones but not in superficial zones. In cartilage from inflamed knee joints staining with the use of IGF-1 receptor antibody did not change significantly, whereas a pronounced increase in staining was noted with biotinylated IGF-1 in chondrocytes of the middle and deeper zones of cartilage. It is concluded that the staining patterns obtained with the use of IGF-1 receptor antibody and biotinylated IGF-1 are remarkably different, suggesting that the latter also detects IGF-binding proteins. The results suggest that joint inflammation has no consistent effect on IGF-1 receptor expression but may induce a significant upregulation of IGF-binding proteins in chondrocytes of the middle and deeper zones of cartilage.

Keywords

Deep Zone Intracellular Staining Superficial Zone Arthritic Mouse Patellar Cartilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adem, A., Jossan, S. S., D'argy, R., Gillberg, P. G., Nordberg, A., Winbald, B., &Sara, V. (1989) IGF-1 receptors in the human brain: quantitative autoradiographic localization.Brain Res. 503, 299–303.PubMedCrossRefGoogle Scholar
  2. Altman, F. P. (1987) Gelatin embedding technique as an aid in the preparation of unfixed cryostat sections.Histochem. J. 10, 617.Google Scholar
  3. Aydelotte, M. B. & Keuttner, K. E. (1991) Heterogeneity of articular chondrocytes and cartilage matrix. InJoint Cartilage Degradation: Basic and Clinical Aspects (edited byWoessner, J. F. & Howell, D. S), pp. 37.Google Scholar
  4. Baumick, B. &Bala, R. M. (1991) Differential effects of insulinlike growth factors 1 and 2 on growth, differentiation and glucoregulation in differentiating chondrocyte cells in culture.Acta Endocrinol. 125, 201–11.Google Scholar
  5. Baxter, R. C. (1993) Circulating binding proteins for the insulin-like growth factors.Trends Endocrinol. Metabol. 4, 91–6.Google Scholar
  6. Byers, J., Maroudas, A., Oztop, F., Stockwell, R. A. &Venn, M. F. (1977) Histological and biochemical studies on cartilage from osteoarthritic femoral heads with special reference to surface characteristics.Connect. Tissue Res. 5, 41–9.PubMedGoogle Scholar
  7. Chin, E., Michels, K. &Bondy, C. A. (1994) Partition of insulin-like growth factor binding sites between the insulin-like growth factor-1 and insulin-like growth factor-2 receptors and IGF-binding proteins in the human kidney.J. Endocrinal. Metab. 78, 156–164.Google Scholar
  8. Dore, S., Peletier, J.-P., Dibattista, J. A., Tardif, G., Brazeau, P. &Martel-Pelletier, J. (1994) Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor 1 binding sites but are unresponsive to its stimulation.Arthritis Rheum. 37, 235–63.Google Scholar
  9. Hardingham, T. &Bayliss, M. (1990) Proteoglycans of articular cartilage: Changes in aging and jo joint disease.Sec. Arthritis Rheum. 20, 12–33.Google Scholar
  10. Hardingham, T. E., Fosang, A. J. &Dudhia, J. (1992a) Aggrecan, the chondroitin sulfate/keratan sulfate proteoglycan from cartilage. InArticular Cartilage and Osteoarthritis (edited byKuetiner, K. E.), pp. 5–20. New York: Raven Press.Google Scholar
  11. Hardingham, T. E., Bayliss, M. T., Rayan, V. &Noble, D. P.(1992b) Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage.Br. J. Rheumatol. 31, (Suppl. 1), 1–6.PubMedGoogle Scholar
  12. Hascall, V. C., Handley, C. J. McQuillan, D. J., Hacall, G. K. Robinson, H. C., &Lowther, D. A. (1983). The effect of serum on biosynthesis of proteoglycans by bovine articular cartilage in culture.Arch. Biochem. Biophys. 224, 206–23.PubMedCrossRefGoogle Scholar
  13. Isaksson, O. G., Ohlsson, C., Nilsson, A., Isgaard, J. &Lindahl, A. (1991) Regulation of cartilage growth by growth hormone and insulin-like growth factor 1.Pathology 5, 451–3.Google Scholar
  14. Jansen, J., Van Buul-Offers, S. C., Hoogerbrugge, C. M., Poorter, T. L., Corvol, M. T. &van den Brande, J. L. (1989) Characterization of specific insulin-like growth factor [IGF]-1 and IGF-2 receptors on cultured rabbit articular chondrocyte membranes.Endocrinology 129, 245–9.Google Scholar
  15. Johnstone, J., Bitensky, L. &Chayen, J. (1972) Cryostat sections of unmineralized bone.J. Clin. Pathol. 25, 742.PubMedGoogle Scholar
  16. Lafeber, F. P. J. G., Van der Kraan, P. M., Vanroy, H. L. A. M., Vitters, E. L., Huber-Bruning, O., Van den Berg, W. B. &Bijlsma, J. W. J. (1992) Local changes in proteoglycan synthesis during culture are different for normal and osteoarthritic cartilage.Am. J. Pathol. 140, 1421–9.PubMedGoogle Scholar
  17. Lafeber, F. P. J. G., Vander Kraan, P. M., Roy, J. L. A. M., Huber-Bruning, O. &Bijlsma, J. W. J. (1993) Articular cartilage explant culture; an appropriatein vitro system to compare osteoarthritic and normal human cartilage.Connect. Tissue Res. 29, 287–99.PubMedGoogle Scholar
  18. LeRoith, D. &Raizada, M. K. (1989)Molecular and Cellular Biology of Insulin-like Growth Factors and their Receptors. New York: Plenum Press.Google Scholar
  19. Lersniak, M. A., Hill, J. M., Kiess, W., Rojeski, M., Pert, C. B.,&Roth, J. (1988) Receptors for insulin-like growth factor-1 and 2; autoradiographic localization in rat brain and comparison to receptor for insulin.Endocrinology 123, 2089–99.Google Scholar
  20. Luyten, F. P., Hacall, V. C., Nissley, S. P., Morales, T. I. &Reddi, A. H. (1988) Insulin-like growth factors maintain steadystate metabolism of proteoglycans in bovine articular cartilage explants.Arch. Biochem. Biophys. 267, 416–25.PubMedCrossRefGoogle Scholar
  21. McQuilland, D. J., Handley, C. J., Campbell, M. A., Bolis, S., Millway, V. E. &Herington, A. C. (1986) Stimulation of proteoglycan synthesis by serum and insulin-like growth factor-1 in culture bovine articular cartilage.Biochem. J. 240, 424–30.Google Scholar
  22. Meachim, G., Ghadially, F. N. & Collins, D. H. (1965) Regressive changes in the superficial layer of human articular cartilage.Ann. Rheum. Dis. 24, 23–30.PubMedGoogle Scholar
  23. Middleton, J. F. S. &Tyler, J. A. (1992) Upnegulation of insulin-like growth factor 1 gene expression in the lesions of osteoarthritic human articular cartilage.Ann. Rheum. Dis. 51, 440–7.PubMedGoogle Scholar
  24. Nefly, E. K., Beukers, M. W., Oh. Y., Cohen, P. &Rosenfeld, R. G. (1991) Insulin-like growth factor receptors.Acta Paediat. Scand. 372, 116–23.Google Scholar
  25. Oemar, B. S., Foellmer, H. G., Hodgedon-ananant, L. &Rosenzweig, S. A. (1991) Regulation of insulin-like growth factor receptor in diabetic mesangial cells.J. Biol. Chem. 266, 2369–73.PubMedGoogle Scholar
  26. Osborn, K. D., Trippel, S. B. &Mankin, H. J. (1989) Growth factor stimulation of adult articular cartilage.J. Orthop. Res. 7, 35–42PubMedCrossRefGoogle Scholar
  27. Pearse, A. D. &Gardner, D. L. (1972) Preparation of unfixed undermineralized bone sections: The Bright bone cryostat.J. Clin. Pathol. 25, 26–9.PubMedGoogle Scholar
  28. Rechler, H. M. &Nissley, S. P. (1990) InPeptide Growth Factors and their Receptors (edited bySporn, M. B. &Robers, A. B.), pp.263–376. New York: Springer-Verlag.Google Scholar
  29. Rijntjes, N. V. M., Van de Putte, L. B. A., Van der Pol, M. &Guelen, P. J. M. (1979) Cryosectioning of undecalcified tissues for immunofluorescence.J. Immunol. Meth. 30, 263–8.CrossRefGoogle Scholar
  30. Rosenzweig, S. A., Zetterstrom, C. &Benjamin, A. (1990) Identification of retinal insulin receptors using site-specific antibodies to a carboxyl-terminal peptide of the human insulin receptor alpha-subunit. Upregulation of neuronal insulin receptors in diabetes.J. Biol. Chem. 265, 18030–4.PubMedGoogle Scholar
  31. Sampson, H. W. &Cannon, M. S. (1986) Zonal analysis of metabolic profiles of articular-epiphyseal cartilage chondrocytes.Histochem. J. 18, 265–70.CrossRefGoogle Scholar
  32. Schalch, D. S., Sessions, C.M., Farley, A. C., Masakawa, A., Emler, C. A., &Dills, D. G. (1986) Interaction of insulin-like growth 1/Somatomedin with cultured rat chondrocytes: Receptor binding and internalization.Endocrinology 118, 1590–7.PubMedGoogle Scholar
  33. Schalkwijk, J., Joosten, L. A. B., van den Berg, W. B., Wijk, J. J. &van de Putte, L. B. A. (1989a) Insulin-like growth factor stimulation of chondrocyte proteoglycan synthesis by human synovial fluid.Arthritis Rheum. 32, 66–71.PubMedGoogle Scholar
  34. Schalkwijk, J., Joosten, L. A. B., Van den Berg, W. B. &Van de Putte, L. B. A. (1989b) Chondrocyte nonresponsiveness to insulin-like growth factor 1 in experimental arthritis.Arthritis Rheum. 32, 894–900.PubMedGoogle Scholar
  35. Siczwkowski, M. &Watt, F. M. (1990) Subpopulations of chondrocytes from different zones of pig articular cartilage: Isolation, growth and proteoglycan synthesis in culture.J. Cell Sci. 97, 349–60.Google Scholar
  36. Stevenson, K. R., Gilmour, R. S. &Wathes, D. C. (1994). Localization and quantification of insulin-like growth factor-1 and-2 mRNA and type 1 receptors in the ovine uterus during the estrous cycle and early pregnancy.Endocrinol. 134, 1655–64.CrossRefGoogle Scholar
  37. Tesch, H. G., Handley, C. J., Cornell, H. J. &Herrington, A. C. (1992) Effects of free and bound insulin-like growth factors on proteoglycan metabolism in articular cartilage explants.J. Orthop. Res. Soc. 10, 14–22.Google Scholar
  38. Trippel, S. B., Van Wijk, J. J., Poster, M. B. &Svoboda, M. E. (1983) Characterization of specific somatomedim C receptors on isolated bovine growth plate chondrocytes.Endocrinol. 112, 2128–34.Google Scholar
  39. Trippel, S. B., Chernausek, S. D., van Wijk, J. J., Moses, A. C. &Mankin, H. J. (1988) Demonstration of type 1 and type 2 somatomedin receptors in bovine growth plate chondrocytes.J. Orthop. Res. 6, 817–26.PubMedCrossRefGoogle Scholar
  40. Tyler, J. A. (1989) Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines.Biochem. J. 260, 543–8.PubMedGoogle Scholar
  41. Ullrich, A., Gray, A., Tam, A. W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henrel, W., Le Bon, T., Kathuria, S., Chen, E., Jacons, S., Francke, U., Ranchandran, J. &Fujita-Yamaguchi, Y. (1986) Insulin-like growth factor 1 receptor primary structure: Comparison with insulin receptor suggests structural determinants that define functional specificity.EMBO J. 5, 2503–12.PubMedGoogle Scholar
  42. Van den Berg, W. B., Kruijsen, M. W. M., Van de Putte, L. B. A. &Zwarts, W. A. (1981) Antigen-induced arthritis and zymosan-induced arthritis in mice: Studies onin vivo cartilage proteoglycan synthesis and chondrocyte death.Br. J. Exp. Pathol. 62, 308–16.PubMedGoogle Scholar
  43. Van den Berg, W. B., Kruijsen, M. W. M. &Van de Putte, L. B. A. (1982) The mouse patella assay: An easy method of quantitating articular cartilage chondrocyte functionin vivo andin vitro.Rheum. Int. 1, 165–9.Google Scholar
  44. Van den Berg, W. B., Joosten, L. A. B., Schalkwijk, J., van de Loo, F. A. J. &Van Beuningen, H. M. (1989) Mechanism of cartilage destruction in experimental arthritis: Lack of IGF-1 responsiveness. InTherapeutic Approaches to Inflammatory Diseases (edited byLewis, A. J., Doherty, N. S. andAckeman, N. R.), pp. 47–54. New York: Elsevier.Google Scholar
  45. Van Noorden, C. J. F. &Vogels, I. M. C. (1986) Enzyme histochemical reactions in unfixed and undecalcified cryostat sections of mouse knee joints with special reference to arthritic lesions.Histochemistry 86, 127–33.PubMedCrossRefGoogle Scholar
  46. Verschure, P. J., Joosten, L. A. B., Van der Kraan, P. M. &Van den Berg, W. B. (1994a) Responsiveness of articular cartilage from normal and inflamed mouse knee joints to various growth factors.Ann. Rheum. Dis. 53, 455–60.PubMedGoogle Scholar
  47. Verschure, P. J., Van der Kraan, P. M., Vitters, E. L. &Van den Berg, W. B. (1994b) Stimulation of proteoglycan synthesis by triamcinolone acetonide and insulin like growth factor in normal and arthritic murine articular cartilage.J. Rheumatol. 21, 920–5.PubMedGoogle Scholar
  48. Verschure, P. J., Van Marle, J., Joosten, L. A. B. &Van den Berg, W. B. (1994c) Localization and quantification of the insulin-like growth factor-1 receptor in mouse articular cartilage by confocal laser scanning microscopy.J. Histochem. Cytochem. 42, 765–73.PubMedGoogle Scholar
  49. Watanabe, N., Rosenfeld, R. G., Hintz, R. L., Hintz, R. L., Dollar, L. A., &Smith R. L. (1985) Characterization of a specific insulin-like growth factor-1/ Somatomedin-C receptor on high density primary monolayer cultures of bovine articular chondrocytes: regulation of receptor concentration by somatomedin, insulin and growth hormone.J. Endocrinol. 107, 275–83.PubMedGoogle Scholar
  50. Wells, S. K., Sandison, D., Strickler, J. &Webb, W. W. (1989) Quantitative fluorescence imaging with laser scanning confocal microscopy. InThe Handbook of Confocal Microscopy (edited byPawley, S.), pp. 27–39. Madison: IMR Press.Google Scholar
  51. Wilson, T. (1989) The role of the pinhole in confocal imaging systems. InThe Handbook of Confocal Microscopy (edited byPawley, J.), pp. 113–26. Madison: IMR Press.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Pernette J. Verschure
    • 1
  • Jan Van Marle
    • 2
  • Leo A. B. Joosten
    • 1
  • Wim B. Van den Berg
    • 1
  1. 1.Department of RheumatologyUniversity Hospital NijmegenNijmegenThe Netherlands
  2. 2.Academic Medical CenterUniversity of Amsterdam, Department of Electron MicroscopyAmsterdamThe Netherlands

Personalised recommendations