Experimental Mechanics

, Volume 39, Issue 2, pp 142–149 | Cite as

Novel procedure for complete in-plane composite characterization using a single T-shaped specimen

  • M. Grédiac
  • F. Pierron
  • Y. Surrel


This paper deals with the direct identification of the in-plane elastic properties of orthotropic composite plates from heterogeneous strain fields. The shape of the tested specimen is that of a T subjected to a complex stress state. As a result, the entire set of unknown parameters is directly involved in the strain and displacement responses of the sample. No exact analytical solution is available for such a geometry, and a specific strategy is used to identify the different stiffness components from the whole-field displacements measured over the tested specimen with a suitable optical method. The paper focuses mainly on the experimental aspects of the procedure, and an example of mechanical characterization of a fabric-reinforced composite plate is given.


Composite mechanical characterization elastic properties grid method inverse problem heterogeneous strain fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pindera, M.-J. andHerakovich, C.T., “Shear Characterization of Unidirectional Composite with the Off-axis Tension Test,” EXPERIMENTAL MECHANICS,26,103–112 (1986).Google Scholar
  2. 2.
    Pierron, F. andVautrin, A., “The 10 ° Off-axis Tensile Test: A Critical Approach,”Comp. Sci. Tech.,56,483–488 (1996).CrossRefGoogle Scholar
  3. 3.
    Pierron, F., “Saint-Venant Effects in the losipescu Speciemen,”J. Comp. Mat.,32 (22),1986–2015 (1998).Google Scholar
  4. 4.
    Rouger, F., Khebibeche, M., and Le Govic, C., “Non Determined Tests as a Way to Identify Wood Elastic Parameters: The Finite Element Approach,” Proceedings of the Euromech Colloquium 269 Mechanical Identification of Composites, Elsevier, 82–90 (1990).Google Scholar
  5. 5.
    Hendricks, M.A.N., “Identification of the Mechanical Properties of Solid Materials,” Doctoral dissertation, Eindhoven University of Technology (1991).Google Scholar
  6. 6.
    Bezine, G. andShi, G., “A New Method for the Determination of the Flexural Rigidity of an Orthotropic Plate,”Eng. Anal. Bound. Elements,10,307–312 (1992).Google Scholar
  7. 7.
    Furgiuele, F.M., Muzzupappa, M., andPagnotta, L., “A Full-field Procedure for Evaluating the Elastic Properties of Advanced Ceramics,” EXPERIMENTAL MECHANICS,37,285–291 (1997).Google Scholar
  8. 8.
    Grédiac, M., “On the Direct Determination of Invariant Parameters Governing the Bending of Anisotropic Plates,”Int. J. Solids Struct. 33 (27),3969–3982 (1996).zbMATHGoogle Scholar
  9. 9.
    Grédiac, M., Fournier, N., Paris, P.-A. and Surrel, Y., “Direct Measurement of Invariant Parameters of Composite Plates,” J. Comp. Mat. (1999).Google Scholar
  10. 10.
    Sol, H., “Identification of Anisotropic Plate Rigidities Using Free Vibration Data,” Doctoral dissertation, University of Brussels (1986).Google Scholar
  11. 11.
    Moussu, F. andNivoit, M., “Determination of Elastic Constants of Orthotropic Constants Plates by Modal Analysis/Method of Superposition,”J. Sound Vibration,165,149–163 (1993).CrossRefGoogle Scholar
  12. 12.
    Motta Soares, C.M., Freitas, J.M., Araujo, A.L., andPedersen, P., “Identification of Material Properties of Composite Plate Specimens,”Comp. Struct.,25,277–285 (1993).Google Scholar
  13. 13.
    Ayorinde, E.O. andGibson, R.F., “Elastic Constants of Orthotropic Composite Materials Using Plate Resonance Frequencies, Classical Lamination Theory and an Optimized Three-mode Rayleigh Formulation,”Comp. Eng.,3 (5),395–407 (1993).Google Scholar
  14. 14.
    Lai, T.C. andIp, K.H., “Parameter Estimation of Orthotropic Plates by Bayesian Sensitivity Analysis,”Comp. Struct.,34,29–42 (1996).Google Scholar
  15. 15.
    Sol, H., Hua, H., De Visscher, J., Vatomme, J., andDe Wilde, W.P., “A Mixed Numerical/Experimental Technique for the Nondestructive Identification of the Stiffness Properties of Fibre Reinforced Composite Materials,”NDT & E Int.,30, (2),85–91 (1997).Google Scholar
  16. 16.
    Grédiac, M. andVautrin, A., “A New Method for Determination of Bending Rigidities of Thin Anisotropic Plates,”J. Appl. Mech.,57,964–968 (1990).Google Scholar
  17. 17.
    Grédiac, M. andVautrin, A., “Mechanical Characterization of Anisotropic Plates: Experiments and Results,”Euro. J. Mech. Solids,12,819–838 (1993).Google Scholar
  18. 18.
    Grédiac, M. andParis, P.-A., “Direct Identification of Elastic Constants of Anisotropic Plates by Modal Analysis: Theoretical and Numerical Aspects,”J. Sound Vibration,195,401–415 (1996).Google Scholar
  19. 19.
    Grédiac, M., Fournier, N., Paris, P.-A., andSurrel, Y., “Direct Identification of Elastic Constants of Anisotropic Plates by Modal Analysis: Experimental Results,”J. Sound Vibration,210,645–659 (1998).Google Scholar
  20. 20.
    Grédiac, M. andPierron, F., “A T-shaped Specimen for the Direct Characterization of Orthotropic Materials,”Int. J. Num. Methods Eng.,41,293–309 (1998).Google Scholar
  21. 21.
    Tsai, S.W. andHahn, H.T., Introduction to Composite Materials, Technomic, Lancaster, PA (1980).Google Scholar
  22. 22.
    Roddier, F. and Roddier, C., “Imaging with a Multi-mirror Telescope,” ESO Conference on Optical Telescopes of the Future, ed. F. Pacini, W. Richter and R.N. Wilson, Geneva (1978).Google Scholar
  23. 23.
    Roddier, C. andRoddier, F., “Imaging with a Coherence Interferometer in Optical Astronomy,”IAU Colloquium 49 on Formation of Images from Spatial Coherence Functions in Astronomy, ed. C. van Schooneveld, Reidel, Norwell, MA (1978).Google Scholar
  24. 24.
    Takeda, M., Ina, H., andKobayashi, S., “Fourier-transform Method of Fringe-pattern Analysis for Computer-based Topography and Interferometry,”J. Opt. Soc. Am.,72,156–160 (1982).Google Scholar
  25. 25.
    Goldrein, H.T., Palmer, S.J.P., andHuntley, J.M., “Automated Fine Grid Technique for Measurement of Large-strain Deformation Map,”Opt. Lasers Eng.,23,305–318 (1995).CrossRefGoogle Scholar
  26. 26.
    Womack, K.H., “Interferometric Phase Measurement Using Spatial Synchronous Detection,”Opt. Eng.,23,391–395 (1984).Google Scholar
  27. 27.
    Toyooka, S., andTominaga, M., “Spatial Fringe Scanning for Optical Phase Measurement,”Opt. Communications,51 (2),68–70 (1984).Google Scholar
  28. 28.
    Kujawińska, M. and Wójciak, J., “Spatial-carrier Phase-shifting Technique of Fringe Pattern Analysis,” Industrial Applications of Holographic and Speckle Measuring Techniques, ed. W. P. Jüptner,SPIE 1508 Bellingham, WA, 61–67 (1991).Google Scholar
  29. 29.
    Surrel, Y., “Design of Algorithms for Phase Measurements by the Use of Phase-stepping,”Appl. Opt.,35, (1),51–60 (1996).Google Scholar
  30. 30.
    Surrel, Y., “Additive Noise Effect in Digital Phase Detection,”Appl. Opt.,36 (1),271–276 (1997).Google Scholar
  31. 31.
    Pierron, F., Cerisier, F., and Grédiac, M., “A Numerical and Experimental Study of Woven Composite Pin-joints,” J. Comp. Mat. (forthcoming).Google Scholar
  32. 32.
    Cerisier, F., “Conception d'une structure travaillante en composite et étude de ses liaisons,”Ph.D. thesis, Université Jean Monnet de Saint-Etienne, France (1998).Google Scholar
  33. 33.
    Fournier, N., Grédiac, M., Paris, P.-A., and Surrel, Y., “Phasestepped Deflectometry Applied to Shape Measurement of Bent Plates,” Experimental Mechanics (1999).Google Scholar
  34. 34.
    Bulhak, J. and Surrel, Y., “Strain Field Measurements with High Spatial Resolution,” Holography Club of the French Society for Optics, Bordeaux, November 18–19 (1998).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1999

Authors and Affiliations

  • M. Grédiac
    • 1
  • F. Pierron
    • 2
  • Y. Surrel
    • 2
  1. 1.Université Blaise Pascal Clermont IIAubiere CedexFrance
  2. 2.Conservatoire National des Arts et MetiersNational Institute of MetrologyParis Cdex 03France

Personalised recommendations