Advertisement

Annals of Global Analysis and Geometry

, Volume 1, Issue 1, pp 49–78 | Cite as

Equivariant completions of homogenous algebraic varieties by homogenous divisors

  • Dmitry Ahiezer
Article

Abstract

Complete smooth complex algebraic varieties with an almost transitive action of a linear algebraic group are studied. They are classified in the case, when the complement of the open orbit is a homogeneous hypersurface. If the group and the isotropy subgroup at a generic point are both reductive, then there exists a natural one-to-one correspondence between these two-orbit varieties and compact riemannian symmetric spaces of rank one.

Keywords

Group Theory Symmetric Space Generic Point Algebraic Group Algebraic Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AHIEZER, D.N.: Algebraic groups acting transitively in the complement of a homogeneous hypersurface. Dokl.Akad.Nauk SSSR 245:2 281 - 284 (1979) (Russ.).Engl. Trans.: Soviet Math. Dokl. 20, 278 – 281 (1979)zbMATHMathSciNetGoogle Scholar
  2. [2]
    AHIEZER, D.N.: Dense orbits with two ends. Izv. Akad. Nauk SSSR, ser. mat., 41:2, 308 - 324 (1977) (Russ.). Engl. Trans.:Math. USSR, Izvestija 11, 293 – 307 (1977)zbMATHMathSciNetGoogle Scholar
  3. [3]
    BIALYNICKI-BIRULA, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math. 85:4, 577 - 582 (1963)zbMATHMathSciNetGoogle Scholar
  4. [4]
    BOREL, A.: Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. 58:3, 443 - 457 (1953)zbMATHMathSciNetGoogle Scholar
  5. [5]
    BOREL, A.: Linear algebraic groups., New York - Amsterdam: W. A. Benjamin 1969Google Scholar
  6. [6]
    BOREL, A., TITS, J.; Eléments unipotents et sous-groupes paraboliques de groupes réductifs. Inv. Math. 12:2, 95 - 104 (1971)CrossRefMathSciNetGoogle Scholar
  7. [7]
    BOTT, R.: Homogeneous vector bundles. Ann. of Math. 66:2, 203 - 248 (1957)zbMATHMathSciNetGoogle Scholar
  8. [8.]
    BOURBAKI, N.: Groupes et algèbres de Lie, 2-ième partie. Paris: Hermann 1968Google Scholar
  9. [9]
    BREDON, G.E.: Introduction to compact transformation groups. New York London: Academic Press 1972Google Scholar
  10. [10]
    HUCKLEBERRY, A.T. , OEL JEKLAUS , E .: Homogeneous spaces from a complex analytic viewpoint (to appear)Google Scholar
  11. [11]
    HUCKLEBERRY, A.T. , SNOW, D.: Almost homogeneous Kähler manifolds with hyper surface orbits (to appear)Google Scholar
  12. [12]
    KARPELEVIČ, F.I.: On a fibering of homogeneous spaces. Uspehl Mat. Nauk 11:3, 131 - 138 (1956) (Russ.),Google Scholar
  13. [13]
    MONTGOMERY, D., YANG, C.T.: The existence of a slice. Ann. of Math. 65:1, 108 - 116 (1957)MathSciNetGoogle Scholar
  14. [14]
    MOSTOW, G.D.: On covariant fiberings of Klein spaces I, II. Amer.J.Math. 77:2, 247 - 278 (1955); 84:3, 466 – 474 (1962)zbMATHMathSciNetGoogle Scholar
  15. [15]
    OELJEKLAUS, E.: Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten. Math.Ann. 190:2, 154–166 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    POTTERS, J.: On almost homogeneous compact complex analytic surfaces. Inv.Math. 8:3, 244 - 266 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    SHAFAREVICH, I.R.: Basic algebraic geometry. Moscow: Nauka 1972 (Russ.) Engl.Translation- New York - Heidelberg - Berlin: Springer-Verlag (Grundlehren 213) 1974Google Scholar
  18. [18]
    WANG, H. -C.: Two-point homogeneous spaces. Ann. of Math. 55:1, 177 - 191 (1952)zbMATHMathSciNetGoogle Scholar
  19. [19]
    WEISFEILER, B. Yu.: On a certain class of unipotent subgroups of semisimple algebraic groups. Uspehi Mat. Nauk. 21:2, 222–223 (1966) (Russ.)MathSciNetGoogle Scholar
  20. [20]
    WOLF, J.A.: Space of constant curvature. New York: Mc Graw-Hill 1967Google Scholar

Copyright information

© VEB Deutscher Verlag der Wissenchaften 1983

Authors and Affiliations

  • Dmitry Ahiezer
    • 1
  1. 1.USSRMoscow

Personalised recommendations