Annals of Global Analysis and Geometry

, Volume 1, Issue 1, pp 49–78 | Cite as

Equivariant completions of homogenous algebraic varieties by homogenous divisors

  • Dmitry Ahiezer
Article

Abstract

Complete smooth complex algebraic varieties with an almost transitive action of a linear algebraic group are studied. They are classified in the case, when the complement of the open orbit is a homogeneous hypersurface. If the group and the isotropy subgroup at a generic point are both reductive, then there exists a natural one-to-one correspondence between these two-orbit varieties and compact riemannian symmetric spaces of rank one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AHIEZER, D.N.: Algebraic groups acting transitively in the complement of a homogeneous hypersurface. Dokl.Akad.Nauk SSSR 245:2 281 - 284 (1979) (Russ.).Engl. Trans.: Soviet Math. Dokl. 20, 278 – 281 (1979)MATHMathSciNetGoogle Scholar
  2. [2]
    AHIEZER, D.N.: Dense orbits with two ends. Izv. Akad. Nauk SSSR, ser. mat., 41:2, 308 - 324 (1977) (Russ.). Engl. Trans.:Math. USSR, Izvestija 11, 293 – 307 (1977)MATHMathSciNetGoogle Scholar
  3. [3]
    BIALYNICKI-BIRULA, A.: On homogeneous affine spaces of linear algebraic groups. Amer. J. Math. 85:4, 577 - 582 (1963)MATHMathSciNetGoogle Scholar
  4. [4]
    BOREL, A.: Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. 58:3, 443 - 457 (1953)MATHMathSciNetGoogle Scholar
  5. [5]
    BOREL, A.: Linear algebraic groups., New York - Amsterdam: W. A. Benjamin 1969Google Scholar
  6. [6]
    BOREL, A., TITS, J.; Eléments unipotents et sous-groupes paraboliques de groupes réductifs. Inv. Math. 12:2, 95 - 104 (1971)CrossRefMathSciNetGoogle Scholar
  7. [7]
    BOTT, R.: Homogeneous vector bundles. Ann. of Math. 66:2, 203 - 248 (1957)MATHMathSciNetGoogle Scholar
  8. [8.]
    BOURBAKI, N.: Groupes et algèbres de Lie, 2-ième partie. Paris: Hermann 1968Google Scholar
  9. [9]
    BREDON, G.E.: Introduction to compact transformation groups. New York London: Academic Press 1972Google Scholar
  10. [10]
    HUCKLEBERRY, A.T. , OEL JEKLAUS , E .: Homogeneous spaces from a complex analytic viewpoint (to appear)Google Scholar
  11. [11]
    HUCKLEBERRY, A.T. , SNOW, D.: Almost homogeneous Kähler manifolds with hyper surface orbits (to appear)Google Scholar
  12. [12]
    KARPELEVIČ, F.I.: On a fibering of homogeneous spaces. Uspehl Mat. Nauk 11:3, 131 - 138 (1956) (Russ.),Google Scholar
  13. [13]
    MONTGOMERY, D., YANG, C.T.: The existence of a slice. Ann. of Math. 65:1, 108 - 116 (1957)MathSciNetGoogle Scholar
  14. [14]
    MOSTOW, G.D.: On covariant fiberings of Klein spaces I, II. Amer.J.Math. 77:2, 247 - 278 (1955); 84:3, 466 – 474 (1962)MATHMathSciNetGoogle Scholar
  15. [15]
    OELJEKLAUS, E.: Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten. Math.Ann. 190:2, 154–166 (1970)CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    POTTERS, J.: On almost homogeneous compact complex analytic surfaces. Inv.Math. 8:3, 244 - 266 (1969)CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    SHAFAREVICH, I.R.: Basic algebraic geometry. Moscow: Nauka 1972 (Russ.) Engl.Translation- New York - Heidelberg - Berlin: Springer-Verlag (Grundlehren 213) 1974Google Scholar
  18. [18]
    WANG, H. -C.: Two-point homogeneous spaces. Ann. of Math. 55:1, 177 - 191 (1952)MATHMathSciNetGoogle Scholar
  19. [19]
    WEISFEILER, B. Yu.: On a certain class of unipotent subgroups of semisimple algebraic groups. Uspehi Mat. Nauk. 21:2, 222–223 (1966) (Russ.)MathSciNetGoogle Scholar
  20. [20]
    WOLF, J.A.: Space of constant curvature. New York: Mc Graw-Hill 1967Google Scholar

Copyright information

© VEB Deutscher Verlag der Wissenchaften 1983

Authors and Affiliations

  • Dmitry Ahiezer
    • 1
  1. 1.USSRMoscow

Personalised recommendations