Experimental Mechanics

, Volume 34, Issue 1, pp 37–44

A genetic algorithm for determining the location of structural impacts

  • James F. Doyle
Article

Abstract

The spectral-element method, which is very suitable for solving force-identification problems, is combined with a stochastic genetic algorithm to give a scheme that can locate the source of structural impacts. The results are demonstrated with experimental data from the impact of an aluminum beam.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerardi, T.G., “Health Monitoring Aircraft,”J. Intelligent Materials Systems & Structures,1,375–385 (1990).Google Scholar
  2. 2.
    Ghoneim, G.A.M., Johansson, B.M., Smyth, M.W., andGrinstead, J., “Global Ship Ice Impact Forces Determined from Full-Scale Tests and Analytical Modeling of the Ice-breakers Canmar Kigoriak and Robert Le Meur”,Trans. of SNAME,92,253–282 (1984).Google Scholar
  3. 3.
    Williams, D. and Jones, R.P.N., “Dynamic Loads in Aeroplanes under Given Impulsive Loads with Particular Reference to Landing and Gust Loads on a Large Flying Boat”, Aero. Research Council, TR# 2221 (1948).Google Scholar
  4. 4.
    Whiston, G.S., “Remote Impact Analysis by Use of Propagated Acceleration Signals, I: Theoretical Methods”,J. Sound & Vib.,97 (1),35–51 (1984).Google Scholar
  5. 5.
    Jordan, R.W. andWhiston, G.S., “Remote Impact Analysis by Use of Propagated Acceleration Signals II: Comparison between Theory and Experiment”,J. Sound & Vib.,97,53–63 (1984).Google Scholar
  6. 6.
    Schueller, J.K. andWall, T.M.P., “Impact of Fruit on Flexible Beams to Sense Modulus of Elasticity”,Experimental Mechanics,31,118–121 (1991).Google Scholar
  7. 7.
    Stevens, K.K., “Force Identification Problems: an Overview”, Proc. 1987 SEM Spring Conf. on Exp. Mech., 838–844 (1987).Google Scholar
  8. 8.
    Srawley, J.E. and Esgor, J.B., “Investigation of Hydrotest Failure of Thiokol Chemical Corporation 260-inch-diameter SL-1 Motor Case”, NASA TMX-1194 (1966).Google Scholar
  9. 9.
    Briggs, J.C. andTse, M.-K., “Impact Force Identification using Extracted Modal Parameters and Pattern Matching”,Int. J. Impact Eng.,12,361–372 (1992).Google Scholar
  10. 10.
    Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, Orlando (1984).Google Scholar
  11. 11.
    Ho, C.L., “Ultra-sonic Surface Eave Detection Technique”, Chap. 3, Experimental Techniques in Fracture Mechanics (1975).Google Scholar
  12. 12.
    Maginness, M.G., “The Reconstruction of Elastic Wave Fields from Measurements over a Transducer Array”,J. Sound & Vib.,20 (2),219–240 (1972).Google Scholar
  13. 13.
    Ewing, W.M. andJardetzky, W.S., Elastic Waves in Layered Media, McGraw-Hill, New York (1957).Google Scholar
  14. 14.
    Briggs, J.C., Force Identification using Extracted Modal Parameters with Applications to Glide Height Testing of Computer Hard Disks, PhD Thesis, M.I.T. (1991).Google Scholar
  15. 15.
    Doyle, J.F., “An Experimental Method for Determining the Location and Time of Initiation of an Unknown Dispersing Pulse”, EXPERIMENTAL MECHANICS27,229–233 (1987).Google Scholar
  16. 16.
    Doyle, J.F., “Further Developments in Determining the Dynamic Contact Law”,Experimental Mechanics,24,265–270 (1984).Google Scholar
  17. 17.
    Doyle, J.F., “Determining the Contact Force during the Transverse Impact of Plates”,Experimental Mechanics,27,68–72 (1987).Google Scholar
  18. 18.
    Doyle, J.F., “Experimentally Determining the Contact Force During the Transverse Impact of Orthotropic Plates”, J. Sound & Vib., 441–448 (1987).Google Scholar
  19. 19.
    Rizzi, S.A. and Doyle, J.F., “Force Identification for Impact of a Layered System”. Computational Aspects of Impact and Penetration, ed. L.E. Schwer and R.F. Kulak, 221–241, Elmepress International (1991).Google Scholar
  20. 20.
    Doyle, J.F. andFarris, T.N., “Analysis of Wave Motion in 3-D Structures using Spectral Methods”.Computational Aspects of Contact, Impact and Penetration, ed. L.E. Schwer andR.F. Kulak, 197–219, Elmepress International, Switzerland (1991).Google Scholar
  21. 21.
    Doyle, J.F., “Force Identification from Dynamic Responses of a Bi-Material Beam”,Experimental Mechanics,33,64–69 (1993).Google Scholar
  22. 22.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., andVetterling, W.T., Numerical Recipes, Cambridge University Press, Cambridge (1986).Google Scholar
  23. 23.
    Davis, L., Genetic Algorithms and Simulated Annealing, Pitman, London (1987).Google Scholar
  24. 24.
    Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading, MA (1989).Google Scholar
  25. 25.
    Doyle, J.F., Wave Propagation in Structures, Springer-Verlag, New York (1989).Google Scholar
  26. 26.
    Gopalakrishnan, S., Spectral Analysis of Wave Propagation in Connected Waveguides, PhD Thesis, Purdue Univ. (1992).Google Scholar
  27. 27.
    Doyle, J.F., “A Spectrally Formulated Finite Element for Longitudinal Wave Propagation”, Int. J. Anal. and Exp. Modal Analysis, 1–5 (1988).Google Scholar
  28. 28.
    Doyle, J.F. and Farris, T.N., “A Spectrally Formulated Element for Flexural Wave Propagation in Beams”, Int. J. Anal. and Exp. Modal Analysis, 99–107 (April 1990).Google Scholar
  29. 29.
    Doyle, J.F. and Farris, T.N., “A Spectrally Formulated Finite Element for Wave Propagation in 3-D Frame Structures”, Int. J. Anal. and Exp. Modal Analysis, 223–237 (Oct. 1990).Google Scholar
  30. 30.
    Gopalakrishnan, S., Martin, M. and Doyle, J.F., “A Matrix Methodology for Spectral Analysis of Wave Propagation in Multiple Connected Timoshenko Beams”, J. Sound & Vib., 11–24 (1992).Google Scholar
  31. 31.
    Holland, J., Adaptation in Natural and Artificial Systems, Univ. of Michigan Press (1975).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1994

Authors and Affiliations

  • James F. Doyle
    • 1
  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest Lafayette

Personalised recommendations