Advertisement

Experimental Mechanics

, Volume 40, Issue 3, pp 289–297 | Cite as

Use of the hole-drilling method for measuring residual stresses in highly stressed shot-peened surfaces

  • J. P. Nobre
  • M. Kornmeier
  • A. M. Dias
  • B. Scholtes
Article

Abstract

The same shot-peening treatment was applied to five steels with different mechanical properties. The induced residual stress profiles were analyzed using X-ray diffraction and incremental hole drilling (IHD). The results of both techniques showed that IHD can still be successfully used for measuring shot-peening residual stresses, even if these exceed the yield strength of the bulk material. Expected errors due to the plasticity effect are reduced by the strain hardening of the surface. For an assessment of the reliability of IHD data, strain-hardening variation was quantified by microhardness measurements to estimate the yield strength of the plastified layer. All the main calculation methods for IHD were applied. The results were compared and discussed with respect to the characteristics of each method.

Key Words

Residual stresses incremental hole drilling shot peening plasticity effect X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belassel, M., Lebrun, J.L., Denis, S., Gautier, E., and Bettembourg, J.P., “Effect of Thermal and Mechanical Loading on the Generation of Macro and Micro Stresses in Eutectoid Steel,” Proceedings of the 4th International Conference on Residual Stresses, Baltimore, MD, 392–401 (1994).Google Scholar
  2. 2.
    Niku-Lari, A., Lu, J., andFlavenot, J.F., “Measurement of Residual Stress Distribution by the Incremental Hole-drilling Method,”J. Mech. Working Tech.,11,165–188 (1985).Google Scholar
  3. 3.
    Chant, M.J., Griffith, R.A., andMiles, L., “Comparison of Two Methods of Measuring Residual Stresses Arising from Surface Treatment,”J. Mech. Working Tech.,8,181–191 (1983).Google Scholar
  4. 4.
    Le Calvez, C., Lebrun, J.L., Cluzeau, C., and Harcouet, P., “Industrial Optimisation of Stress Gradient Determination by X-ray Diffraction and Incremental Hole-drilling on Beryllium and Aluminium Alloy,” Recent Advances in Experimental Mechanics, S. Gomes et al., eds., A. A. Balkema, Rotterdam, 751–756 (1994).Google Scholar
  5. 5.
    Fathallah, R., Cao, W., Castex, L., Webster, P.S., Ezeilo, A., Webster, G.A., and Webster, P.J., “Comparison of Residual Stresses Determined by X-ray Diffraction, Neutron Diffraction and the Hole Drilling Method in Aerospace Shot-peened Materials,” Proceedings of the 4th International Conference on Residual Stresses, Baltimore, MD, 834–843 (1994).Google Scholar
  6. 6.
    Lu, J. andFlavenot, J.F., “Applications of the Incremental Hole-drilling Method for Measurement of Residual Stress Distribution,”Exp. Techniques,13,18–24 (1989).Google Scholar
  7. 7.
    Baron, H.U., “Kombinierter Einsatz der Röntgenbeugung und der Bohrlochmethode bei der industriellen Eigenspannungsermittlung,” Residual Stresses, Proc. European Conference on Residual Stresses 1992, Oberursel, Deutsche Gesellschaft für Materialkunde, 269–278 (1993).Google Scholar
  8. 8.
    Zhu, W.X. andSmith, D.J., “Residual Stresses by Hole-drilling in Curved Components,”Recent Advances in Experimental Mechanics, S. Gomes et al., eds., A. A. Balkema, Rotterdam, 777–782 (1994).Google Scholar
  9. 9.
    Jo, J., Hendricks, R.W., Swanson, R.E., andFoutz, R.V., “Residual Stresses in Railroad Car Wheels,”Adv. X-ray Anal.,34,611–622 (1991).Google Scholar
  10. 10.
    Lu, J., Bouhelier, C., Lieurade, H.P., Baralle, D., Miege, B., andFlavenot, J.F., “Study of Residual Welding Stress Using Step-by-step Hole Drilling and X-ray Diffraction Method,”Welding in the World,33 (2),118–128 (1994).Google Scholar
  11. 11.
    Villard, C., Viola, A., Zeller, E., Castellucci, P., andDuchazeaubeneix, J.M., “Techniques de Mésures de Contraintes Résiduelles: Contribution à l'Étude de l'Amélioration de la Tenue en Fatigue d'Alliages Utilisés en Aéronautique,”J. de Physique IV,6,239–249 (1996).Google Scholar
  12. 12.
    Kornmeier, M., “Analyse von Abschreck-und Verformungseigenspannungen mittels Bohrloch-und Röntgenverfahren,” PhD thesis: Institut für Werkstofftechnik, Universität Gh Kassel (1999).Google Scholar
  13. 13.
    Beaney, E.M. andProcter, E., “A Critical Evaluation of the Center Hole Technique for the Measurement of Residual Stresses,”Strain,10,7–15 (1974).Google Scholar
  14. 14.
    Beaney, E.M., “Accurate Measurement of Residual Stress on any Steel Using the Center Hole Method,”Strain,12,99–106 (1976).Google Scholar
  15. 15.
    “Measurement of Residual Stresses by the Hole-drilling Strain Gage Method,” Technical Note No. TN-503-4, Vishay-Measurements Group Inc., 1–19 (1993).Google Scholar
  16. 16.
    Schwarz, T. andKockelmann, H., “Die Bohrlochmethode-ein für viele Anwendungsbereiche optimales Verfahren zur Experimentellen Ermittlung von Eigenspannungen,”HBM, Messtechnische Briefe,29 (2),33–38 (1993).Google Scholar
  17. 17.
    Nickola, W.E., “Practical Subsurface Residual Stress Evaluation by the Hole Drilling Method,” Proceedings of the SEM Spring Conference on Experimental Mechanics, New Orleans, 47–58 (1986).Google Scholar
  18. 18.
    Schajer, G.S., “Measurement of Non-uniform Residual Stress Using the Hole-drilling Method,”ASME J. Eng. Mat. Tech.,110 338–343,344–349 (1988).Google Scholar
  19. 19.
    Tabor, D., “A Simple Theory of Static and Dynamic Hardness,”Proc. Roy. Soc. Lon. A,192,247–274 (1948).Google Scholar
  20. 20.
    George, R.A., Dinda, S., and Kasper, A.S., “Estimating Yield Strength from Hardness Data,” Metal Prog., 30–35 (May 1976).Google Scholar
  21. 21.
    Cahoon, J.R., Broughton, W.H., andKutzak, A.R., “The Determination of Yield Strength from Hardness Measurements,”Metall. Trans.,2,1979–1983 (1971).Google Scholar
  22. 22.
    Mathar, J., “Ermittlung von Eigenspannungen durch Messung von Bohrlochverformungen,”Archiv für das Eisenhüttenwesen,6,277–281 (1933).Google Scholar
  23. 23.
    ASTM E837-94a, “Standard Test Method for Determining Residual Stresses by the Hole-drilling Strain-gage Method,” Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, 1–7 (1994).Google Scholar
  24. 24.
    Beghini, M., Bertini, L., andRaffaelli, P., “Numerical Analysis of Plasticity Effects in the Hole-drilling Residual Stress Measurement,”J. Test. Eval.,22,522–529 (1994).Google Scholar
  25. 25.
    Gibmeier, J., “Untersuchung plastischer Dehnungsanteile bei der Bohrlochmethode—FEM-Modellierung experimentell ermittelter Dehnungsverläufe,” Diplomarbeit, Institut für Werkstofftechnik, Universität Gh Kassel (1998).Google Scholar
  26. 26.
    Bijak-Zochowski, M., “A Semi-destructive Method of Measuring Residual Stresses,”VDI-Berichte,313,469–476 (1978).Google Scholar
  27. 27.
    Flaman, M.T. andManning, B.H., “Determination of Residual-stress Variation with Depth by the Hole-drilling Method,” EXPERIMENTAL MECHANICS,25,205–207 (1985).CrossRefGoogle Scholar
  28. 28.
    Kelsey, R.A., “Measuring Non-uniform Residual Stresses by the Hole Drilling Method,”Proc. Soc. Exp. Stress Anal.,14,181–194 (1956).Google Scholar
  29. 29.
    Schajer, G.S., “Application of Finite Element Calculations to Residual Stress Measurements,”ASME J. Eng. Mat. Tech.,103,157–163 (1981).Google Scholar
  30. 30.
    Wern, H., “Measurement of Non-uniform Residual Stresses Using the Hole Drilling Method—A New Integral Formalism,”Strain,31 (2),63–68 (May 1995).Google Scholar
  31. 31.
    Kockelmann, H. andSchwarz, T., “Vergleich Praktizierter Auswerteverfahren der Bohrlochmethode,”Experimentelle Spannungsanalyse, Kolloquium Kölln 1993, GMA-Bericht,22,93–103 (1993).Google Scholar
  32. 32.
    Lu, J., ed., Handbook of Measurement of Residual Stresses, Society for Experimental Mechanics, Bethel, CT, 5–34, 71–131 (1996).Google Scholar
  33. 33.
    Flaman, M.T., Mills, B.E., andBoag, J.M., “Analysis of Stress-variation-with-depth Measurement Procedures for the Center-hole Method of Residual Stress Measurement,”Exp. Techniques,11,35–37 (1987).Google Scholar
  34. 34.
    Schajer, G.S. andAltus, E., “Stress Calculation Error Analysis for Incremental Hole-drilling Residual Stress Measurements,”ASME J. Eng. Mat. Tech.,118,120–126 (1996).Google Scholar
  35. 35.
    Macherauch, E. andMüller, P., “Das sin 2ψ-Verfahren der röntgenographischen Spannungsmessung,”Zeitschrift für angewandte Physik,13,305–312 (1961).Google Scholar
  36. 36.
    Flaman, M.T., “Investigation of Ultra-high Speed Drilling for Residual Stress Measurements by the Center Hole Method,” EXPERIMENTAL MECHANICS,22,26–30 (1982).CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2000

Authors and Affiliations

  • J. P. Nobre
    • 1
  • M. Kornmeier
    • 2
  • A. M. Dias
    • 3
  • B. Scholtes
    • 4
  1. 1.Departamento de Engenharia MecânicaUniversidade de CoimbraCoimbraPortugal
  2. 2.Departamento de Engenharia MecânicaUniversidade de CoimbraCoimbraPortugal
  3. 3.Departamento de Engenharia MecânicaUniversidade de CoimbraCoimbraPortugal
  4. 4.Institut für WerkstofftechnikUniversität Gh KasselKasselGermany

Personalised recommendations