Experimental Mechanics

, Volume 25, Issue 3, pp 232–244

Applications of digital-image-correlation techniques to experimental mechanics

  • T. C. Chu
  • W. F. Ranson
  • M. A. Sutton


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabor, D., “A New Microscope Principle,”Nature,161,177–178 (1949).Google Scholar
  2. 2.
    Vest, C.M., Holographic Interferometry, Wiley and Sons (1979).Google Scholar
  3. 3.
    Leendertz, J.A., “Interferometric Displacement Measurement on Scattering Surfaces Utilizing Speckle Effect,”J. Physics E: Scientific Inst.,3,214–218 (1970).Google Scholar
  4. 4.
    Archbold, E., Burch, J.M. andEnnos, A.E., “Recording on In-Plane Surface Displacement by Double Exposure Speckle Photography,”Opt. Act.,17,883–898 (1970).Google Scholar
  5. 5.
    Archbold, E. andEnnos, A.E., “Displacement Measurement from Double-Exposure Laser Photographs,”Ibid.,19,253–271 (1972).Google Scholar
  6. 6.
    Duffy, D.E., “Moiré Gauging of In-Plane Displacement Using Double Aperture Imaging,”Appl. Opt.,11 (8),1778–1781 (1982).Google Scholar
  7. 7.
    Hung, Y.Y., “A Speckle-Shearing Interferometer: A Tool for Measuring Derivatives of Surface Displacements,”Opt. Comm.,11 (2),132–135 (1974).Google Scholar
  8. 8.
    Chiang, F.P. andAsundi, A., “White Light Speckle Method of Experimental Strain Analysis,”Appl. Opt.,18 (4),409–411 (1979).Google Scholar
  9. 9.
    Durelli, A.J. andParks, V.J., “Moiré Fringes as Parametric Curves,”Experimental Mechanics,7 (3),97–104 (March1967).Google Scholar
  10. 10.
    Post, D., “Developments in Moiré Interferometry,”Opt. Eng.,21 (3),458–467 (1982).Google Scholar
  11. 11.
    Mendenhall, F.T., PhD Thesis, Theoretical and Appl. Mech. Dept., Univ. of Illinois (1981).Google Scholar
  12. 12.
    Peters, W.H. andRanson, W.F., “Digital Imaging Techniques in Experimental Stress Analysis,”Opt. Eng.,21 (3),427–432 (1982).Google Scholar
  13. 13.
    Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F. andMcNeil, S.R., “Determination of Displacements Using an Improved Digital Correlation Method,”Image and Vision Computing,1 (3),133–139 (1983).Google Scholar
  14. 14.
    Novozhilov, V.V., Theory of Elasticity, U.S. Dept. of Commerce Translation (1861).Google Scholar
  15. 15.
    Fung, Y.C., Foundations of Solid Mechanics, Prentice Hall Inc., Englewood Cliffs, NJ (1965).Google Scholar
  16. 16.
    Castleman, K.R., Digital Image Processing, Prentice Hall Inc., Englewood Cliffs, NJ (1979).Google Scholar
  17. 17.
    Andrews, H.C. and Patterson, C.L. III, “Digital Interpolation of Discrete Images,” IEEE Trans. on Computers, V, C-25, (2) (Feb. 1976).Google Scholar
  18. 18.
    Tian, Qi and Huhns, M.N., “A Fast Hill Climbing Algorithm for Measuring Object Displacement with Sub-Pixel Accuracy,” IEEE 12th Workshop on Applied Imagery Pattern Recognition, College Park, MD (Sept. 1983).Google Scholar
  19. 19.
    Peters, W.H., Ranson, W.F., Sutton, M.A., Chu, T.C. and Anderson, J. “Applications of Digital Correlation Methods to Rigid Body Mechanics,” Opt. Eng.,22 (6), (Nov. 1983).Google Scholar
  20. 20.
    Dalloul, S.A., “Image Correlation in Deformable Bodies Including Non-Linear Geometries,” PhD Thesis, Mech. Eng. Dept., Univ. of South Carolina (1984).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1985

Authors and Affiliations

  • T. C. Chu
    • 1
  • W. F. Ranson
    • 2
  • M. A. Sutton
    • 2
  1. 1.Department of Mechanics and AerospacePolytechnic Institute of New YorkBrooklyn
  2. 2.Department of Mechanical EngineeringUniversity of South CarolinaColumbia

Personalised recommendations