Experimental Mechanics

, Volume 19, Issue 8, pp 290–308 | Cite as

Moiré methods of strain analysis

  • Fu-Pen Chiang


Mechanical Engineer Fluid Dynamics Strain Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested List of Reading References Books

  1. 1.
    Durelli, A.J. and Parks, V.J., Moiré Analysis of Strain, Prentice-Hall, Inc. (1970).Google Scholar
  2. 2.
    Theocaris, P.S., Moiré Fringes in Strain Analysis, Pergamon Press, Inc. (1969).Google Scholar

Papers On General Theory of Moiré Fringes and the In-Plane Moiré Method

  1. 3.
    Chiang, F.P., “A Method to Increase the Accuracy of Moiré Method,”J. Engrg. Mech. Div., Proc. ASCE,91 (EMI),137–149 (1965).Google Scholar
  2. 4.
    Chiang, F.P., “Determination of Signs in the Moiré Method,” J. Engrg. Mech. Div., Proc. ASCE,95 (EM6),1379–1391 (1969).Google Scholar
  3. 5.
    Chiang, F.P., “Moiré Rosette Method for Strain Analysis,”J. Engrg. Mech. Div., Proc. ASCE,96 (EM6),1285–1289 (1970).Google Scholar
  4. 6.
    Chiang, F.P., “On Moiré Method Applied to the Determination of Two-dimensional Dynamic Strain Distributions,”J. Appl. Mech., Trans. ASME,39,Series E (3),829–830 (1972).Google Scholar
  5. 7.
    Chiang, F.P., “Techniques of Optical Spatial Filtering Applied to the Processing of Moiré Fringes,”Experimental Mechanics,6 (11),523–526 (1969).Google Scholar
  6. 8.
    Chiang, F.P., Parks, V.J. andDurelli, A.J., “Moiré Fringe Interpolation and Multiplication by Fringe Shifting,”Experimental Mechanics,8 (12),554–560 (1968).Google Scholar
  7. 9.
    Chiang, F.P. andKhetan, R.P., “Differentiation of Moiré Patterns by Optical Spatial Filtering,”J. Appl. Mech.,42,Series E (1),25–28 (1975).Google Scholar
  8. 10.
    Chiang, F.P. andRanganayakamma, B., “Deflection Measurements Using Moiré Gap Effect,”Experimental Mechanics,11 (7),296–302 (1971).Google Scholar
  9. 11.
    Chiang, F.P. andJuang, R., “A Method to Shift Moiré Fringes Using Gap Effect,”Experimental Mechanics,13 (5),209–211 (1973).Google Scholar
  10. 12.
    Durelli, A.J. andParks, V.J., “Moiré Fringes as Parametric Curves,”Experimental Mechanics,7 (3),97–104 (1967).Google Scholar
  11. 13.
    Durelli, A.J., Sciammarella, C.A. andParks, V.J., “Interpolation of Moiré Patterns,”J. Struct. Div., Proc. ASCE,89 (EM2),71–88 (1963).Google Scholar
  12. 14.
    Durelli, A.J. andSciammarella, C.A., “Elastoplastic Stress and Strain Distribution in a Finite Plate with a Circular Hole Subjected to Unidimensional Load,”J. Appl. Mech.,30 (1),115–121 (1963).Google Scholar
  13. 15.
    Morse, S., Durelli, A.J. and Sciammarella, C.A., “Geometry of Moiré Fringes in Strain Analysis,” Trans. ASCE,126-I (1961).Google Scholar
  14. 16.
    Parks, V.J., “Moiré-grid Analyzer Method for Strain Analysis (Discussion),”Experimental Mechanics,6 (5),287–288 (1966).Google Scholar
  15. 17.
    Parks, V.J. andDurelli, A.J., “Moiré Patterns of Partial Derivatives of Displacement Components,”J. Appl. Mech.,33,Series E (4),901–906 (1966).Google Scholar
  16. 18.
    Post, D., “Moiré Grid-analyzer Method for Stress Analysis,”Experimental Mechanics,5 (11),366–377 (1965).Google Scholar
  17. 19.
    Post, D., “New Optical Methods of Moiré Fringe Multiplication,”Experimental Mechanics,8 (2),63–68 (1968).Google Scholar
  18. 20.
    Post, D., “Sharpening and Multiplication of Moiré Fringes,”Experimental Mechanics,7 (4),154–159 (1967).Google Scholar
  19. 21.
    Riley, W.F. and Durelli, A.J., “Application of Moiré Methods to the Determination of Transient Stress and Strain Distributions,” J. Appl. Mech.,29 (1) (1962).Google Scholar
  20. 22.
    Sciammarella, C.A., “Basic Optical Law in the Interpretation of Moiré Patterns Applied to the Analysis of Strain: I,”Experimental Mechanics,5 (5),154–160 (1965).Google Scholar
  21. 23.
    Sciammarella, C.A., “Digital Filtering Techniques Applied to the Interpolation of Moiré Fringe Data,”Experimental Mechanics,7 (11),468–475 (1967).Google Scholar
  22. 24.
    Sciammarella, C.A. andChiang, F.P., “The Moiré Method Applied to Three-dimensional Elastic Problems,”Experimental Mechanics,4 (12),313–319 (1964).Google Scholar
  23. 25.
    Sciammarella, C.A., “Techniques of Fringe Interpolation in Moiré Patterns,” Proc. 2nd SESA Int. Cong. Experimental Mechanics, B.E. Rossi, ed., 62–73 (1966).Google Scholar
  24. 26.
    Sciammarella, C.A. andDurelli, A.J., “Moiré Fringes as a Means of Analyzing Strains,”J. Engrg. Mech. Div., Proc. ASCE,87 (EMI),55–74 (1961).Google Scholar
  25. 27.
    Sciammarella, C.A. andChiang, F.P., “Gap Effect on Moiré Patterns,”Zeitschrift für angrewandte Mathematik and Physik,19,326–333 (1969).Google Scholar
  26. 28.
    Sciammarella, C.A. andLurowist, N., “Multiplication and Interpolation of Moiré Fringe Orders by Purely Optical Techniques,”J. Appl. Mech.,32 (2),425–430 (1967).Google Scholar

Papers on Shadow-moiré Method

  1. 29.
    Chiang, F.P., “A Shadow Moiré Method with Two Discrete Sensitivities,”Experimental Mechanics,15 (10),382–385 (1975).Google Scholar
  2. 30.
    Collect, J.P., Marasco, J. andPflug, L., “Le Moiré d'Ombre: Une Methode Experimentale et ses Possibilités,”Bull. Technique de la Suisse Romande,9,179–187 (1974).Google Scholar
  3. 31.
    Dykes, B.C., “Analysis of Displacements in Large Plates by the Grid-shadow Moiré Techniques,” Experimental Stress Analysis and Its Influence on Design; M.L. Meyer, ed., Proc. 4th Int. Conf. Experimental Stress Analysis, 125–134 (1971).Google Scholar
  4. 32.
    Marasco, J., “Use of a Curved Grating in Shadow Moiré,”Experimental Mechanics,15 (12),464–470 (1975).Google Scholar
  5. 33.
    Meadows, D.M., Johnson, W.O. andAllen, J.B., “Generation of Surface Contours by Moiré Pattern,”Appl. Optics,9 (4),942–947 (1970).Google Scholar
  6. 34.
    Pirodda, L., “Principi e Applicazioni di un Metodo Fotogrammetrico basato sull'impiego del Moiré,”Revista de Ingegneria,12,913–923 (1969).Google Scholar
  7. 35.
    Takasaki, H., “Moiré Topology,”Appl. Optics,9 (6),1457–1472 (1970).Google Scholar
  8. 36.
    Theocaris, P.S., “Isopachic Patterns by the Moiré Method,”Experimental Mechanics,4 (6),153–159 (1964).Google Scholar
  9. 37.
    Theocaris, P.S., “Moiré Method in Plates,”Proc. Int. Asso. Shell Struct. (Symp.), Warsaw, North Holland Publ. Co., Amsterdam, 877–889 (1963).Google Scholar

Papers On Reflection-moiré Method

  1. 38.
    Chiang, F.P. andTreiber, J., “A Note on Ligtenberg's Reflective Moiré Method,”Experimental Mechanics,10 (12),537–538 (1970).Google Scholar
  2. 39.
    Chiang, F.P., “A Whole Field Method for the Measurement of Two-dimensional State of Stress in Thin Films,”Experimental Mechanics,12 (8),377–379 (1972).Google Scholar
  3. 40.
    Chiang, F.P. andJaisingh, G., “Dynamic Moiré Methods for the Bending of Plates,”Experimental Mechanics,13 (4),168–171 (1973).Google Scholar
  4. 41.
    Chiang, F.P. andJaisingh, G., “A New Optical System for Moiré Methods,”Experimental Mechanics,14 (11),459–662 (1974).Google Scholar
  5. 42.
    Ligtenberg, F.K., “The Moiré Method: A New Experimental Method for the Determination of Moments in Small Slab Models,”Proc. SESA,12,83–98 (1954).Google Scholar
  6. 43.
    Ranganayakamma, B. andChiang, F.P., “Mismatches Applied to Ligtenberg's Reflective Moiré Methods,”J. Strain Anal.,8 (1),24–29 (1973).Google Scholar
  7. 44.
    Reider, G. andRitter, R., “Krummungsmessung an belesteten Blattan nach dem Ligtenberfschen Moiré-Verfahren,”Forschung im Ingenieurwesen, VDI-Verlag Dusseldorf,31 (2),33–44 (1965).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1979

Authors and Affiliations

  • Fu-Pen Chiang
    • 1
  1. 1.Department of Mechanical EngineeringState University of New York at Stony BrookStony Brook

Personalised recommendations