Advertisement

Experimental Mechanics

, Volume 41, Issue 4, pp 324–331 | Cite as

Spectrotemporal analysis of guided-wave pulse-echo signals: Part 1. Dispersive systems

  • S. -C. Wooh
  • K. Veroy
Article

Abstract

In this paper, a wavelet-based time frequency analysis is presented to analyze guided-wave signals for rapid inspection of thin-walled structural members. The overall objective is to detect and locate discontinuities using a single broadband signal. Part 1 of this paper shows how the wavelet transform can be used to analyze a dispersive system. A straightforward procedure is developed to extract group delay information from the computed wavelet transform coefficients. The procedure is demonstrated by a simulation study for single-mode and simple dual-mode dispersion signals. Part 2 is an experimental study of multimode dispersion.

Key Words

Guided waves multimode dispersion wavelet transform group delays bandwidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rokhlin, S.I., Mayhan, R.J., andAdler, L., “On-line Ultrasonic Lamb Wave Monitoring of Spot Welds,”Mat. Eval.,43,879–883 (1985).Google Scholar
  2. 2.
    Datta, S.K., Shah, A.H., andKarunasena, W., “Wave Propagation in Composite Media and Material Characterization,”Elastic Waves and Ultrasonic Nondestructive Evaluation, ed. S. K. Datta, J. D. Achenbach andY. S. Rajapakse, Elsevier Science, New York, 159–169 (1990).Google Scholar
  3. 3.
    Woodward, C. andWhite, K.R., “Long Range Bridge Girder Evaluation Using Lamb Waves,”Review of Progress in Quantitative NDE,15,ed. D. O. Thompson andD. E. Chimenti,Plenum Press,New York,1847–1852 (1996).Google Scholar
  4. 4.
    Park, M.H., Kim, I.S., andYoon, Y.K., “Ultrasonic Inspection of Long Steel Pipes Using Lamb Waves,”NDT&E Int.,29 (1),13–20 (1996).Google Scholar
  5. 5.
    Rose, J.L., Jiao, D., andSpencer, J., Jr., “Ultrasonic Guided Wave NDE for Piping,”Mat. Eval.,54,1310–1313 (1996).Google Scholar
  6. 6.
    Rajana, K.M., Hongerholt, D., Ditri, J.J., andRose, J.L., “Analysis of the Wedge Method of Generating Guided Waves: An Experimental Approach,”Review of Progress in Quantitative NDE,14,ed. D. O. Thompson andD. E. Chimenti,Plenum Press,New York,171–180 (1995).Google Scholar
  7. 7.
    Mal, A.K., Xu, P.C., andBar-Cohen, Y., “Leaky Lamb Waves for the Ultrasonic Nondestructive Evaluation of Adhesive Bonds,”Trans. ASME J. Eng. Mat. Tech.,112,255–259 (1990).Google Scholar
  8. 8.
    Chimenti, D.E. andMartin, R.W., “Nondestructive Evaluation of Composite Laminates by Leaky Lamb Waves,”Ultrasonics,29 (1),13–21 (1991).Google Scholar
  9. 9.
    Bar-Cohen, Y., Mal, A.K., andChang, Z., “Composite Material Defect Characterization Using Leaky Lamb Wave Dispersion Data,”Proceedings of the SPIE—The International Society for Optical Engineering,3396,180–186 (1998).Google Scholar
  10. 10.
    Safaeinili, A., Lobkis, O.I., andChimenti, D.E., “Quantitative Materials Characterization Using Air-coupled Leaky Lamb Waves,”Ultrasonics,34 (2–5),393–396 (1996).Google Scholar
  11. 11.
    Castaings, M. andCawley, P., “The Generation, Propagation, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducers,”J. Acoust. Soc. Am.,100,3070–3077 (1996).Google Scholar
  12. 12.
    Thompson, R.B., “A Model for Electromagnetic Generation of Ultrasonic Guided Waves in Ferromagnetic Metal Polycrystals,”IEEE Trans. Sonics Ultrasonics,SU-20, (4),7–15 (1973).Google Scholar
  13. 13.
    Kwun, H. andBartels, K.A., “Experimental Observation of Elastic-wave Dispersion in Bounded Solids of Various Configurations,”J. Acoust. Soc. Am.,99,962–968 (1996).Google Scholar
  14. 14.
    Pierce, S.G., Culshaw, B., Philip, W.R., Lecuyer, F., andFarlow, R., “Broadband Lamb Wave Measurements in Aluminum and Carbon Glass Fibre Reinforced Composite Materials Using Non-contacting Laser Generation and Detection,”Ultrasonics,35,105–114 (1997).Google Scholar
  15. 15.
    Viktorov, I.A., Rayleigh and Lamb Waves: Physical Theory and Applications, Plenum Press, New York (1967).Google Scholar
  16. 16.
    Graff, K.F., Wave Motion in Elastic Solids, Dover, New York (1975).Google Scholar
  17. 17.
    Rose, J.L., Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, UK (1999).Google Scholar
  18. 18.
    Rose, J.L., Pelts, S.P., andQuarry, M.J., “A Comb Transducer Model for Guided Wave NDE,”Ultrasonics,36 (1–5),163–169 (1998).Google Scholar
  19. 19.
    Monkhouse, R.S.C., Wilcox, P.D., andCawley, P., “Flexible Interdigital PVDF Transducers for the Generation of Lamb Waves in Structures,”Ultrasonics,35,489–498 (1997).Google Scholar
  20. 20.
    Wooh, S.C. andShi, Y., “Synthetic Phase Tuning of Guided Waves,”IEEE Trans. Ultrasonics Ferroelect. Freq. Control,48,209–223 (2001).Google Scholar
  21. 21.
    Alleyne, D. andCawley, P., “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,”J. Acoust. Soc. Am.,89,1159–1168 (1991).Google Scholar
  22. 22.
    Prosser, W.H., Seale, M.D., andSmith, B.T., “Time-frequency Analysis of the Dispersion of Lamb Modes,”J. Acoust. Soc. Am.,105,2669–2676 (1999).Google Scholar
  23. 23.
    Inoue, H., Kishimoto, K., andShibuya, T., “Experimental Wavelet Analysis of Flexural Waves in Beams,” EXPERIMENTAL MECHANICS,36,212–217 (1996).Google Scholar
  24. 24.
    Abbate, A., Frankel, J., and Das, P., “Wavelet Transform Signal Processing for Dispersion Analysis of Ultrasonic Signals,” Proceedings of the IEEE Ultrasonics Symposium, New York, 751–755 (1995).Google Scholar
  25. 25.
    Veroy, K.P. andWooh, S.C., “Analysis of Dispersive Waves Using the Wavelet Transform,”Review of Progress in Quantitative Nondestructive Evaluation, ed. D. O. Thompson andD. E. Chimenti, Plenum Press, New York, 687–694 (1999).Google Scholar
  26. 26.
    Wooh, S.C. andVeroy, K., “Time-frequency Analysis of Broadband Dispersive Waves Using the Wavelet Transform,”Review of Progress in Quantitative NDE,509-A,ed. D. O. Thompson andD. E. Chimenti,American Institute of Physics,Melville, NY,831–838 (2000).Google Scholar
  27. 27.
    Oppenheim, A.V. andSchafer, R.W., Discrete-time Signal Processing, Prentice Hall, Englewood Cliffs, NJ (1989).Google Scholar
  28. 28.
    Chui, C.K., An Introduction of Wavelets, Academic Press, San Diego, CA (1992).Google Scholar
  29. 29.
    Teolis, A., Computational Signal Processing with Wavelets, Birkhäuser, Boston (1998).Google Scholar
  30. 30.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. andLiu, H.H., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,”Proc. Roy. Soc. Lon. A,454,903–995 (1998).Google Scholar
  31. 31.
    Wooh, S.-C. andVeroy, K., “Spectrotemporal Analysis of Guided-wave Pulse-echo Signals: Part 2. Numerical and Experimental Investigations,” EXPERIMENTAL MECHANICS,41,332–342 (2001).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2001

Authors and Affiliations

  • S. -C. Wooh
    • 1
  • K. Veroy
    • 1
  1. 1.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations