Plant and Soil

, Volume 81, Issue 3, pp 333–344 | Cite as

Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil

  • K. Mengel
  • M. Th. Breininger
  • W. Bübl
Article

Summary

In pot experiments grape vine was grown on a calcareous and on a non calcareous soil with a low and with a high water saturation. During the growing period soil solution samples were collected and analyzed for their pH and for HCO 3 , phosphate, Fe, and Ca. High water saturation resulted in a pH increase and in an increase of the HCO 3 concentration in both soils. The level in pH and HCO 3 , however, was much higher in the calcareous soil than in the non calcareous soil. The Fe concentration varied much throughout the experimental period, but there was no major differences between soils and water saturation treatments. The Ca concentration of the soil solution increased with time in the calcareous soil; for the non calcareous soil rather the reverse was true. The phosphate level in the soil solution of the non calcareous soil was about 10 times higher than in the calcareous soil.

After 3 weeks growth all plants of the calcareous soil with the high water saturation showed first symptoms of Fe deficiency. These became more intense from day to day. Plants of the other treatments did not show any chlorotic symptoms. In the treatment with the chlorotic plants the HCO 3 concentration of the soil solution was the highest, the phosphate concentration the lowest from all treatments. It is therefore concluded that HCO 3 and not phosphate is the primary cause for lime induced Fe chlorosis. Despite the low phosphate concentration in the soil solution, the P concentration in the chlorotic leaves was more than twice as high as the P concentration in green leaves grown on the same soil. It is thus assumed that the high P content frequently found in chlorotic leaves is the result and not the cause for Fe chlorosis.

Key words

Bicarbonate Calcareous soils Fe-chlorosis Phosphate Vine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booss A Kolesch H and Höfner W 1982 Chlorose-Ursachen bei Reben (Vitis vinifera L.) am natürlichen Standort. Z. Pflanzenernähr. Bodenk. 145, 246–260.Google Scholar
  2. 2.
    Boxma R 1972 Bicarbonate as the most important soil factor in lime-induced chlorosis in the Netherlands. Plant and Soil 37, 233–243.CrossRefGoogle Scholar
  3. 3.
    Brown J C 1960 An evaluation of bicarbonate induced iron chlorosis. Soil Sci. 89, 246.Google Scholar
  4. 4.
    Carter M R 1980 Association of cation and organic anion accumulation with iron chlorosis of scots pine on prairie soils. Plant and Soil 56, 293–300.CrossRefGoogle Scholar
  5. 5.
    Chen Y and Barak P 1982 Iron nutrition of plants in calcareous soils. Adv. Agron. 35, 217–240.Google Scholar
  6. 6.
    DeKock P C 1955 Iron nutrition of plants at high pH. Soil Sci. 79, 167–175.Google Scholar
  7. 7.
    Hai T van and Laudelout H 1966 L'absorption des phosphates par les racines de riz. Ann. Physiol. vég. 8, 13–24.Google Scholar
  8. 8.
    Jacobson L 1945 Iron in the leaves and chloroplasts of some plants in relation to their chlorophyll content. Plant Physiol. 20, 233–245.Google Scholar
  9. 9.
    Kovanci I, Hakerlerler H and Höfner W 1978 Ursachen der Chlorosen an Mandarinen (Citrus reticulata blanco) der ägäischen Region. Plant and Soil 50, 193–205.CrossRefGoogle Scholar
  10. 10.
    Lindsay W L 1974 Role of chelation in micronutrient availability.In The Plant Root and its Environment. Ed. E W Carson, pp. 507–524.Google Scholar
  11. 11.
    Lindsay W L and Norvell W A 1978 Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42, 421–428.Google Scholar
  12. 12.
    Marschner H 1978 Ernährungs- und ertragsphysiologische Aspekte der Pflanzenernährung. Angew. Bot. 52, 71–87.Google Scholar
  13. 13.
    Marschner H and Schropp A 1977 Vergleichende Untersuchungen über die Empfindlichkeit von 6 Unterlagensorten der Weinrebe gegenüber Phosphat-induziertem. Zink-Mangel. Vitis 16, 79–88.Google Scholar
  14. 14.
    Mengel K and Bübl W 1983 Verteilung von Eisen in Blättern von Weinreben mit HCO 3/− induzierter Fe-Chlorose. Z. Pflanzenernähr. Bodenk. 146, 560–571.Google Scholar
  15. 15.
    Mengel K and Malissiovas N 1981 Bicarbonat als auslösender Faktor der Eisenchlorose bei der Weinrebe (Vitis vinifera). Vitis 20, 235–243.Google Scholar
  16. 16.
    Mengel K Scherer H W and Malissiovas N 1979 Die Chlorose aus der Sicht der Bodenchemie und Rebenernährung. Mitt. Klosterneuburg (Austria) 29, 151–156.Google Scholar
  17. 17.
    Müllner L 1979 Ergebnisse eines Chloroseforschungsprojektes. Mitt. Klosterneuburg (Austria) 29, 141–150.Google Scholar
  18. 18.
    Rutland R B and Bukovac M J 1971 The effect of Calcium bicarbonate on iron absorption and distribution byChrysanthemum morifolium (Ram.) Plant and Soil 35, 225–236.CrossRefGoogle Scholar
  19. 19.
    Schüller H 1969 Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z. Pflanzenernühr. Bodenk. 123, 48–63.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1984

Authors and Affiliations

  • K. Mengel
    • 1
  • M. Th. Breininger
    • 1
  • W. Bübl
    • 1
  1. 1.Institute of Plant Nutrition Justus LiebigUniversity GiessenGiessenFederal Republic of Germany

Personalised recommendations