Experimental Mechanics

, Volume 33, Issue 2, pp 117–122

Phase-measuring profilometry using sinusoidal grating

  • M. Chang
  • C. -S. Ho
Article

Abstract

When a sinusoidal amplitude grating is projected on an object, the surface-height distribution of the object is translated to a phase distribution of the deformed grating image. In this paper, two algorithms developed for phase acquisition of such images are presented and compared. The phase-acquisition algorithms are sufficiently simple that high-resolution phase maps using a highresolution area detector array can be generated in a short time. The average detection error is within 30 mm, which can be reduced further by changing the period of the projected grating and the angle offset between the projection and the observation optics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Idesawa, M. andYatagai, T., “General Theory of Projection-Type Moiré Topography,”Sci. Papers I.P.C.R.,71,57–70 (1977).Google Scholar
  2. 2.
    Srinivasan, V., Liu, H.C. andHalioua, M., “Automated Phase-Measuring profilometry of 3-D Diffuse Objects,”Appl. Opt.,23,3105–3108 (1984).Google Scholar
  3. 3.
    Chang, M. andWang, D. S., “On-Line Automated Phase-Measuring Profilometry,”Opt. and Lasers in Eng.,15,127–139 (1991).Google Scholar
  4. 4.
    Koliopoulos, C.L., “Interferometric Optical Phase Measurement Techniques,” PhD Diss., Univ. of Arizona (1981).Google Scholar
  5. 5.
    Schwider, J., Burow, R., Elssner, K.E., Grzanna, J., Spolaczyk, R. andMerkel, K., “Digital Wavefront Measuring Interferometry: Some Systematic Error Sources,”Appl. Opt.,22,3421–3432 (1983).Google Scholar
  6. 6.
    Kinnstaetter, K., Lohmann, A.W., Schwider, J. andStreibl, N., “Accuracy of Phase Shifting Interferometry,”Appl. Opt.,27,5082–5089 (1988).Google Scholar
  7. 7.
    Chang, M., Hu, C.P., Lam, P. andWyant, J.C., “High Precision Deformation Measurement by Digital Phase Shifting Holographic Interferometry,”Appl. Opt.,24,3780–3783 (1985).Google Scholar
  8. 8.
    Creath, K., “Phase-Shifting Speckle Interferometry,”Appl. Opt.,24,3053–3058 (1985).Google Scholar
  9. 9.
    Sullivan, J.L., “Phase-Stepped Fractional Moiré,”Experimental Mechanics,31,373–381 (1991).CrossRefGoogle Scholar
  10. 10.
    Harding, K.V., Michniewicz, M. andBoehnlein, A., “Small Angle Moiré Contouring,”SPIE,850,166–173 (1987).Google Scholar
  11. 11.
    Boehnlein, A. and Harding, K., “Field Shift Moiré, A New Technique for Absolute Range Measurement,” SPIE Annual Mtg. (1989).Google Scholar
  12. 12.
    Yu, Q., “Spin Filtering Processes and Automatic Extraction of Fringe Centerlines in Digital Interferometric Patterns,”Appl. Opt.,27,3782–3784 (1988).Google Scholar
  13. 13.
    Ning, P.T. andPeng, W.L., “Automatic Analysis of Moiré Fringe Patterns by Using an Image-Processing System,”Experimental Mechanics,28,350–354 (1988).CrossRefGoogle Scholar
  14. 14.
    Chen, T.Y. andTaylor, C.E., “Computerized Fringe Analysis in Photomechanics,”Experimental. Mechanics,29,323–320 (1989).CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1993

Authors and Affiliations

  • M. Chang
    • 1
  • C. -S. Ho
    • 1
  1. 1.Chung-Yuan Christian UniversityChung LiTaiwan

Personalised recommendations