Advertisement

Experimental Mechanics

, Volume 5, Issue 4, pp 193–226 | Cite as

Fatigue: A complex subject—Some simple approximations

Both ends of the fatigue spectrum are covered in this lecture. On the one hand, the present state of understanding of the mechanism is reviewed and the complexity of the process observed. On the other hand, some approximations useful in design are outlined and their application illustrated
  • S. S. Manson
The William M. Murray lecture, 1964

Keywords

Fatigue Mechanical Engineer Fluid Dynamics Simple Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thompson, N. andWadsworth, N. J., “Metal Fatigue,”Advances in Physics (Supplement to Phil. Mag.),7,72–169 (1958).Google Scholar
  2. 2.
    Alden, T. H., “Basic Studies of Fatigue Fracture in Pure Metals,” Rpt No. 62-RL-2923M, General Electric Rsch. Lab., (Feb. 1962).Google Scholar
  3. 3.
    Avery, D. H., andBackofen, W. A., “Nucleation and Growth of Fatigue Cracks,”in Fracture of Solids, ed. by D. C. Drucker andJ. J. Gilman, John Wiley & Sons, Inc., N. Y. (1963).Google Scholar
  4. 4.
    Grosskreutz, J. C., “A Critical Review of Micromechanisms in Fatigue,” Proc. 10th Sagamore Army Mtls. Rsch. Conf., in Fatigue—An Interdisciplinary Approach, ed. by J. J. Burke, N. L. Reed and V. Weiss, Syracuse University Press, 27–59 (1964).Google Scholar
  5. 5.
    Gerberich, W. W., “Plastic Strains and Energy Density in Cracked Plates. I. Experimental Techniques and Results,”GALCITSM 63-23, Graduate Aeronautical Labs., California Institute of Technology, Pasadena, Calif. (June 1963).Google Scholar
  6. 6.
    oppel, G. U., andHill, P. W., “Strain Measurements at the Root of Cracks and Notches,”Experimental Mechanics,4 (7),206–211 (1964).CrossRefGoogle Scholar
  7. 7.
    Howie, A., andWhelan, M. J., “Diffraction Contrast of Electron Microscope Images of Crystal Lattice Defects,”Proc. Royal Soc. London,A263,217–237 (1961).Google Scholar
  8. 8.
    Grosskreutz, J. C., “Research on the Mechanisms of Fatigue,” Tech. Documentary Rpt No. WADD-TR-60-313, pt.II, Prepared under Contract No. AF 33(616)-7858 by Midwest Rsch. Institute (Dec. 1963).Google Scholar
  9. 9.
    Bassett, G. A., Menter, J. W., andPashley, D. W., “Moiré Patterns on Electron Micrographs, and Their Application to the Study of Dislocations in Metals,”Proc. Royal Soc. London,A246,345–368 (1958).Google Scholar
  10. 10.
    Lang, A. R., “Studies of Individual Dislocations in Crystals by X-ray Diffraction Microradiography,”Jnl. Appl. Physics,30,1748–1755 (1959).Google Scholar
  11. 11.
    Dash, W. C., “The Observation of Dislocations in Silicon,”Dislocations and Mechanical Properties of Crystals, John Wiley & Sons, Inc., New York, 57–67 (1957).Google Scholar
  12. 12.
    Hahn, G. T., and Rosenfield, A. R., “Local Yielding and Extension of a Crack under Plane Stress,” Battelle Memorial Inst. (1964).Google Scholar
  13. 13.
    Wood, W. A., Cousland, S. McK., andSargent, K. R., “Systematic Microstructural Changes Peculiar to Fatigue Deformation,”Acta Metallurgica,11,643–652 (1963).Google Scholar
  14. 14.
    Smith, R. W., Hirschberg, M. H., and Manson, S. S., “Fatigue Behavior of Materials Under Strain Cycling in Low and Intermediate Life Range,” NASA TN D-1574 (Apr. 1963).Google Scholar
  15. 15.
    Manson, S. S., and Hirschberg, M. H., “Fatigue Behavior in Strain Cycling in the Low and Intermediate Cycle Range,” Fatigue—An Interdisciplinary Approach, ed. by J. J. Burke, N. L. Reed and V. Weiss, Syracuse University Press, 133–173 (1964).Google Scholar
  16. 16.
    Manson, S. S., “Behavior of Materials Under Conditions of Thermal Stress,” Heat Transfer Symp., University of Michigan, June 27–28, 1952, University of Michigan Press. Also: Manson, S. S., “Behavior of Materials Under Conditions of Thermal Stress,” NACA TN 2933 (July 1953).Google Scholar
  17. 17.
    Manson, S. S., “Thermal Stresses in Design, Part 19—Cyclic Life of Ductile Materials,” Machine Design, 139–144 (July 7, 1960).Google Scholar
  18. 18.
    Laird, C., andSmith, G. C., “Initial Stages of Damage in High Stress Fatigue in Some Pure Metals,”Phil. Mag.,8,1945–1963 (Nov. 1963).Google Scholar
  19. 19.
    Coffin, L. F., Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,”Trans. ASME,76,931–950 (1954).Google Scholar
  20. 20.
    Weiss, V., “Analysis of Crack Propagation in Strain-Cycling Fatigue,” in Fatigue—An Interdisciplinary Approach, ed. by J. J. Burke, N. L. Reed and V. Weiss, Syracuse University Press, 179–186 (1964).Google Scholar
  21. 21.
    Palmgren, A., “Die Lebensdauer von Kugellagern,”ZVDI,68 (14),339–341 (Apr. 1924).Google Scholar
  22. 22.
    Langer, B. F., “Fatigue Failure from Stress Cycles of Varying Amplitudes,”Jnl. Appl. Mech.,4 (4),A160-A162 (1937).Google Scholar
  23. 23.
    Miner, M. A., “Cumulative Damage in Fatigue,” Ibid.Jnl. Appl. Mech.,12,A159-A164 (1945).Google Scholar
  24. 24.
    Grover, H. J., “An Observation Concerning the Cycle Ratio in Cumulative Damage,” Symp. on Fatigue of Aircraft Structures, ASTM, STP No. 274 (1960).Google Scholar
  25. 25.
    Manson, S. S., Nachtigall, A. J., andFreche, J. C., “A Proposed New Relation for Cumulative Fatigue Damage in Bending,”Proc. ASTM,61,679–703 (1961).Google Scholar
  26. 26.
    Manson, S. S., Nachtigall, A. J., Ensign, C. R., and Freche, J. C., “Further Investigation of a Relation for Cumulative Damage in Bending.” NASA Tech. Memo. TM X-52002 (1964).Google Scholar
  27. 27.
    Weibull, W., “The Effect of Size and Stress History on Fatigue Crack Initiation and Propagation,” Proc. Crack Propagation Symp., Cranfield, 271–286 (1961).Google Scholar
  28. 28.
    Richart, F. E., Jr., andNewmark, N. M., “An Hypothesis for the Determination of Cumulative Damage in Fatigue,”Proc. ASTM,48,767–800 (1948).Google Scholar
  29. 29.
    Kaechele, L. E., “Review and Analysis of Cumulative Fatigue Damage Theories,” The Rand Corp., RM-3650-PR (1963).Google Scholar
  30. 30.
    Corten, H. T., andDolan, T. J., “Cumulative Fatigue Damage,”Paper No. 2 of Session 3, Intl. Conf. on Fatigue of Metals,1,Inst. Mech. Engrs.,London (1956).Google Scholar
  31. 31.
    Freudenthal, A. M., andHeller, R. A., “Accumulation of Fatigue Damage,”Fatigue of Aircraft Structures, Academic Press, Inc., N. Y., 146–177 (1956).Google Scholar
  32. 32.
    Freudenthal, A. M., and Heller, R. A., “On Stress Interaction in Fatigue and a Cumulative Damage Rule: Part I—2024 Aluminum and SAE 4340 Steel Alloys,” WADC TR 58-69, 1958 (AD 155687).Google Scholar
  33. 33.
    Henry, D. L., “A Theory of Fatigue-Damage Accumulation in Steel,”Trans. ASME,77,913–918 (1955).Google Scholar
  34. 34.
    Gatts, R. R., “Application of a Cumulative Damage Concept to Fatigue,”Trans. ASME, Series D, Jnl. Basic Engrg.,83D (4),529–540 (1961).Google Scholar
  35. 35.
    Brown, G. W., andWork, C. E., “An Evaluation of the Influence of Cyclic Prestressing on Fatigue Limit,”Proc. ASTM,63,706–716 (1963).Google Scholar
  36. 36.
    Grover, H. J., “Cumulative Damage Theories,” Fatigue of Aircraft Structures, WADC Symp., WADC, TR 59-507, 207–225 (Aug. 1959).Google Scholar
  37. 37.
    Morrow, J., andJohnson, T. A., “Correlation Between Cyclic Strain Range and Low-Cycle Fatigue Life of Metals,”Mtls. Rsch. & Stds.,5 (1),30–32 (1965).Google Scholar
  38. 38.
    Peterson, R. E., “A Method of Estimating the Fatigue Strength of a Member Having a Small Ellipsoidal Cavity,” Intl. Conf. on Fatigue of Metals, Inst. Mech. Engrs., London, 110–117 (1956).Google Scholar
  39. 39.
    Ronay, M., “On Strain Incompatibility and Grain Boundary Damage in Fatigue,” Columbia Univ., Inst. for the Study of Fatigue and Reliability, Tech. Rpt. No. 9 (Aug. 1964).Google Scholar
  40. 40.
    McEvily, A. J., Jr., andBoettner, R. C., “A Note on Fatigue and Microstructure,”Fracture of Solids, John Wiley & Sons, N. Y., 383–389 (1963).Google Scholar
  41. 41.
    Wood, W. A., “Recent Observations on Fatigue Failure in Metals,” ASTM STP No. 237, 110–119 (1958).Google Scholar
  42. 42.
    Schijve, J., “Analysis of the Fatigue Phenomenon in Aluminum Alloys,” Natl. Aero- and Astronautical Rsch. Inst., Amsterdam, NLR-TR-M2122 (1964).Google Scholar
  43. 43.
    Forsyth, P. J. E., “A Two-Stage Process of Fatigue-Crack Growth,” Proc. Crack Propagation Symp., Cranfield, 76–94 (1961).Google Scholar
  44. 44.
    Laird, C., andSmith, G. C., “Crack Propagation in High Stress Fatigue,”Phil. Mag.,7,847–857 (1962).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1965

Authors and Affiliations

  • S. S. Manson
    • 1
  1. 1.Materials and Structures Division, Lewis Research CenterNational Aeronautics and Space AdministrationCleveland

Personalised recommendations