Experimental Mechanics

, Volume 20, Issue 2, pp 53–56 | Cite as

Holographically determined isopachics and isochromatics in the neighborhood of a crack in a glass composite

The application of photo-orthotropic-elasticity to fracture studies of composite materials in evaluated and discussed
  • R. E. Rowlands
  • T. D. Dudderar
  • R. Prabhakaran
  • I. M. Daniel


The isochromatic and isopachic fringes are obtained holographically in the neighborhood of a central crack in a tensile, orthotropic glass-composite plate. The general inability to separate the principal stresses or strains from such information alone under anisotropic conditions is discussed, as are the results relative to fracture-mechanics implications.


Mechanical Engineer Fluid Dynamics Principal Stress Central Crack General Inability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rowlands, R.E. andDaniel, I.M., “Applications of Holography to Anisotropic Composite Plates,”Experimental Mechanics,12 (2),75–82 (Feb. 1972).Google Scholar
  2. 2.
    O'Regan, R. andDudderar, T.D., “New Holographic Interferometer for Stress Analysis,”Experimental Mechanics,11 (6),241–247 (June 1971).Google Scholar
  3. 3.
    Rowlands, R.E., Liber, T., Daniel, I.M. and Rose, P.G., “Stress Analysis of Anisotropic Laminated Plates,” presented at 13th International Congress of Theoretical and Applied Mechanics, Moscow, USSR, August, 1972, and published in AIAA Journal,12 (7), 903–908 (July 1974).Google Scholar
  4. 4.
    Pipes, R.B. andDaniel, I.M., “Moiré Analysis of the Interlaminar Shear Edge Effect in Laminated Composites,”J. Comp. Matls,5 (1),255–259 (April 1974).Google Scholar
  5. 5.
    Daniel, I.M., Rowlands, R.E. andPost, D., “Strain Analysis of Composites by Moiré Methods,”Experimental Mechanics,13 (6),246–252 (June 1973).Google Scholar
  6. 6.
    Rowlands, R.E., Daniel, I.M. andPrabhakaran, R., “Wave Motion in Anisotropic Media by Dynamic Photomechanics,”Experimental Mechanics,14 (11),433–439 (Nov. 1974).CrossRefGoogle Scholar
  7. 7.
    Pih, H. andKnight, C.E., “Photoelastic Analysis of Anisotropic Fiber Reinforced Composites,”J. Comp. Matls.,3 (1),94–107 (Jan. 1969).Google Scholar
  8. 8.
    Sampson, R.C., “A Stress-Optic Law for Photoelastic Analysis of Orthotropic Composites,”Experimental Mechanics,10 (5),210–215 (May 1970).CrossRefGoogle Scholar
  9. 9.
    Dally, J.W. andPrabhakaran, R., “Photo-orthotropic-elasticity,”Experimental Mechanics,11 (8),346–356 (Aug. 1971).Google Scholar
  10. 10.
    Grakh, I.I. andMozhanskaya, A.F., “A Type of Mechanically Anisotropic Optically Sensitive Material,”Polymer Mech.,7 (5),747–751 (Oct. 1971).CrossRefGoogle Scholar
  11. 11.
    Prabhakaran, R. andDally, J.W., “The Application of Photo-Orthotropic Elasticity,”J. Strain Anal.,7 (4),253–260 (1972).Google Scholar
  12. 12.
    Bert, C.W., “Theory of Photoelasticity for Filamentary Composites,”Fibre Science and Tech.,5,165–171 (1972).CrossRefGoogle Scholar
  13. 13.
    Prabhakaran, R., “Photoelastic Analysis of an Orthotropic Ring under Diametral Compression,”AIAA Journal,11 (6),77–78 (June 1973).Google Scholar
  14. 14.
    Pipes, R.B. andRose, J.L., “Strain-Optic Law for a Certain Class of Birefringent Composites,”Experimental Mechanics,14 (9),355–374 (Sept. 1974).Google Scholar
  15. 15.
    Cernosek, J., “On the Photoelastic Response of Composites,”Experimental Mechanics,15 (9),354–357 (Sept. 1975).Google Scholar
  16. 16.
    Prabhakaran, R., “On the Stress-Optic Law for Orthotropic Model Materials in Biaxial Stress Fields,”Experimental Mechanics,15 (1),29–34 (Jan. 1975).Google Scholar
  17. 17.
    Prabhakaran, R., “Strain-Optic Law for Orthotropic Model Materials,”AIAA Journal,13 (6),723–728 (June 1975).Google Scholar
  18. 18.
    Knight, C.E., Jr. and Pih, H., “Shear-Difference Method and Application in Orthotropic Photoelasticity,” ASME paper JM75-6.Google Scholar
  19. 19.
    Prabhakaran, R., “The Interpretation of Isoclinics in Photo-orthotropic-elasticity,”Experimental Mechanics,16 (1),6–10 (Jan. 1976).Google Scholar
  20. 20.
    Dudderar, T.D. andO'Regan, R., “Measurement of the Strain Field Near a Crack Tip in Polymethylmethacrylate by Holographic Interferometry,”Experimental Mechanics,11 (2),49–56 (Feb. 1971).Google Scholar
  21. 21.
    Sih, G.C., Paris, P.C. andIrwin, G.R., “On Cracks in Rectilinearly Anisotropic Bodies,”Int'l. J. of Fracture Mechanics,1 (3),189–209 (Sept. 1965).Google Scholar
  22. 22.
    Barnett, D.M. andAsaro, R.J., “The Fracture Mechanics of Slit-Like Cracks in Anisotropic Elastic Media,”J. Mech. Phys. Solids,20,353–366 (1972).CrossRefGoogle Scholar
  23. 23.
    Jones, R.M., Mechanics of Composite Materials, McGraw-Hill (1975).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1980

Authors and Affiliations

  • R. E. Rowlands
    • 1
  • T. D. Dudderar
    • 2
  • R. Prabhakaran
    • 3
  • I. M. Daniel
    • 4
  1. 1.Department of Engineering MechanicsUniv. of WisconsinMadison
  2. 2.Bell LaboratoriesMurray Hill
  3. 3.Department of Mechanical Engineering and MechanicsOld Dominion UniversityNorfolk
  4. 4.Materials Technology DivisionHT Research InstituteChicago

Personalised recommendations