Experimental Mechanics

, Volume 35, Issue 3, pp 193–200

Towards RGB photoelasticity: Full-field automated photoelasticity in white light

  • A. Ajovalasit
  • S. Barone
  • G. Petrucci
Article

Abstract

In this paper a new full-field method for the automatic analysis of isochromatic fringes in white light is presented. The method, named RGB photoelasticity, eliminates the typical drawbacks of the classical approach to photoelasticity in white light which requires a subjective analysis of colors and an experienced analyst to acquire and interpret the results.

The proposed method makes it possible to determine retardations uniquely in the range of 0–3 fringe orders. For this purpose the isochromatics are acquired by means of a color video camera and the colors are decomposed in the three primary colors (red, green and blue) and compared to those stored in a calibration array in the system. Furthermore, the influence of various spurious effects on the accuracy of the proposed method is experimentally evaluated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vicentini, V., and Molinar, G.F., “Elaborazione di dati fotoelastici per mezzo di un piccolo calcolatore e plotter,” Proc. 1st AIAS Conf. Dept. of Mech. and Aero. Univ. of Palermo, 59–70 (1972).Google Scholar
  2. 2.
    Muller, R.K. andSaackel, L.R., “Complete Automatic Analysis of Photoelastic Fringes,”Experimental Mechanics,19 (7),245–251 (1979).Google Scholar
  3. 3.
    Segugi, Y., Tomita, Y. andWatanabe, M., “Computer-aided Fringe Pattern Analyzer: a Case of Photoelastic Fringes,”Experimental Mechanics,12 (10),362–370 (1979).Google Scholar
  4. 4.
    Conti, P. and Beghini, M., “Analisi fotoelastica assistita da calcolatore,” Proc. 14th AIAS Conf., Institute of Machines, University of Catania, 189–200, (1986).Google Scholar
  5. 5.
    Gillies, R.C., Keskin, O., Telfer, D. andWhiteley, K., “An Image Processing Approach to Photoelastic Fringe Patterns,”Spie 814,Photomechanics and Speckle Metrology,58–70 (1987).Google Scholar
  6. 6.
    Zhang, F., Su, M.Z. andChen, B., “A Digital Image Processing System for Photoelastic Stress Analysis,”Spie 814,Photomechanics and Speckle Metrology,806–809 (1987).Google Scholar
  7. 7.
    Unezaky, E., Tamaki, T. andTakahashi, S., “Automatic Stress Analysis of Photoelastic Experiments by Use of Image Processing,”Experimental Techniques,13 (12),22–27 (1989).Google Scholar
  8. 8.
    Merloni, R. and Paone, N., “Un sistema per l'elaborazione automatica delle frange fotoelastiche: sviluppo del metodo di misura ed analisi dell'incertezza,” Proc. 20th AIAS Conf., Dept. of Mech. and Aero., Univ. of Palermo, 99–108 (1991).Google Scholar
  9. 9.
    Voloshin, A.S. andBurger, C.P., “Half Fringe Photoelasticity: a New Approach to Whole-field Stress Analysis,”Experimental Mechanics,23 (3),304–313 (1983).CrossRefGoogle Scholar
  10. 10.
    Handbook on Experimental Mechanics, ed. A.S. Kobayashi, Prentice-Hall Inc. and SEM, Englewood Cliffs, NJ (1987).Google Scholar
  11. 11.
    Wang, W.C. andChen, T.L., “Half-fringe Photoelastic Determination of Opening Mode Stress Intensity Factor for Edge Cracked Strips,”Eng. Fract. Mech.,32 (1),111–122 (1989).Google Scholar
  12. 12.
    Brown, G.M. andSullivan, J.L., “The Computer-aided Holophotoelastic Method,”Experimental Mechanics,30 (2),135–144 (1990).Google Scholar
  13. 13.
    Pasta, A. and Petrucci, G., “Determinazione del fattore delle intensificazione delle tensioni con la fototermoelasticità assistita,” Proc. 20th AIAS Conf., Dept. of Mech. and Aero., Univ. of Palermo, 109–119 (1991).Google Scholar
  14. 14.
    Hecker, F.W. and Morche, B., “Computer-aided Measurement of Relative Retardations in Plane Photoelasticity,” Experimental Stress Analysis, ed. H. Wieringa, Martinus Nijhoff Publ., 535–542, (1986).Google Scholar
  15. 15.
    Kihara, T., “Automatic Whole-field Measurement of Photoelasticity Using Linear Polarized Incident Light,”Proc. 9th Int. Conf. on Exp. Mech., Copenhagen 2,821–827 (1990).Google Scholar
  16. 16.
    Mawatari, S., Takashi, M., Toyada, Y. andKunio, T., “A Single Valued Representative Function for Determination of Principal Stress Direction in Photoelastic Analysis,”Proc. 9th Int. Conf. on Exp. Mech., Copenhagen,5,2069–2078 (1990).Google Scholar
  17. 17.
    Mawatari, S., Takashi, M., Toyada, Y. andKunio, T., “A New Method of Computer-aided Fringe Order Determination of Isochromatics in Two Dimensional Photoelasticity,”Proc. 9th Int. Conf. on Exp. Mech., Copenhagen,5,2079–2087 (1990).Google Scholar
  18. 18.
    Patterson, E.A. andWang, Z.F., “Towards Full Field Automated Photoelastic Analysis of Complex Components,”Strain 27, (2),49–56 (1991).Google Scholar
  19. 19.
    Alasia, F., Barbato, G., Basile, G. and Mosca, M., “Applicazione di un metodo interferometrico ad eterodina per misure fotoelastiche di elevata sensibilità,” Proc. 15th AIAS Conf., Dept. of Mech. and Nuclear Design, Univ. of Pisa, 155–167 (1987).Google Scholar
  20. 20.
    Sciammarella, C.A. and Ahmadshahi, M.A., “Detection of Fringe Pattern Information Using a Computer Based Method,” Experimental Stress Analysis, ed. H. Wieringa, Martinus Nijhoff Publ., 359–368 (1986).Google Scholar
  21. 21.
    Quan, C., Bryanston-Cross, P.J. andJudge, T.R., “Photoelastic Stress Analysis Using Carrier Fringe and FFT Techniques,”Optics and Lasers in Eng.,18 (2),79–108 (1993).Google Scholar
  22. 22.
    Redner, A.S., “Photoelastic Measurements by Means of Computer-assisted Spectral Contents Analysis,”Experimental Mechanics,25 (2),148–153 (1985).CrossRefGoogle Scholar
  23. 23.
    Redner, A.S., “Photoelastic measurements of residual stress for NDE,”Proc. of Spie,814,Photomechanics and Speckle Metrology,16–19 (1984).Google Scholar
  24. 24.
    Sanford, R.J. and Iyengar, V., “The Measurement of the Complete Photoelastic Fringe Order Using a Spectral Scanner,” Proc. 1985 SEM Spring Conf. on Exp. Mech., 160–168 (1985).Google Scholar
  25. 25.
    Sanford, R.J., “On the Range of Accuracy of Spectrally Scanned White Light Photoelasticity,” Proc. 1986 SEM Conf. on Exp. Mech., 901–908 (1986).Google Scholar
  26. 26.
    Voloshin, A.S. andRedner, A.S., “Automated Measurement of Birefringence: Development and Experimental Evaluation of the Techniques,”Experimental Mechanics,29 (3),252–257 (1982).Google Scholar
  27. 27.
    Marwitz, Kizler andSchuster, “Improved Efficiency in Photoelastic Coatings. Fast Detection of Fringe Order Using Computer Controlled Spectrometry,”Proc. 9th Int. Conf. on Exp. Mech., Copenhagen 2,828–838 (1990).Google Scholar
  28. 28.
    Ivanova, L. andNechev, G., “A Method for Investigation of the Residual Stress in Glasses with Spectral Polariscope,”Proc. of 9th Int. Conf. on Exp. Mech., Copenhagen,2,876–883 (1990).Google Scholar
  29. 29.
    Haake, S.J. andPatterson, E.A., “Photoelastic Analysis of Frozen Stressed Specimens Using Spectral-content Analysis,”Experimental Mechanics,32 (3),266–272 (1992).Google Scholar
  30. 30.
    Haake, S.J. and Patterson, E.A., “Photoelastic Analysis Using a Full Field Spectral Contents Analyser,” Int. Conf. on Photoelasticity: New Instrumentation, Materials and Data Processing Techniques, London (1993).Google Scholar
  31. 31.
    Ajovalasit, A. and Petrucci, G., “Analisi automatica delle frange fotoelastiche in luce bianca,” Proc. 18th AIAS Conf., Institute of Mech. Eng., Univ. of Salerno, 395–407 (1990).Google Scholar
  32. 32.
    Petrucci, G., “Un sistema completo per l'elaborazione delle frange fotoelastiche in luce bianca,” Proc. 20th AIAS Conf., Dept. of Mech. and Aero., Univ. of Palermo, 121–135 (1991).Google Scholar
  33. 33.
    Ajovalasit, A., Barone, S. and Petrucci, G., “Automated Photoelasticity in White Light: Influence of Optical Retarders,” Int. Conf. on Photoelasticity: New Instrumentation, Materials and Data Processing Techniques, London (1993), and J. of Strain Analysis,30 (1), 29–34 (1995).Google Scholar
  34. 34.
    Pratt, W.K., Digital Image Processing, John Wiley & Sons, New York (1978).Google Scholar
  35. 35.
    Baud, R.V., “Contribution to Study of Effect of Elliptical Polarization Upon Energy Transmission,”J. Opt. Soc. of Amer.,21,119–123 (1931).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1995

Authors and Affiliations

  • A. Ajovalasit
    • 1
  • S. Barone
    • 1
  • G. Petrucci
    • 1
  1. 1.Department of Mechanics and AeronauticsUniversita degli StudiPalermoItaly

Personalised recommendations