Experimental Mechanics

, Volume 37, Issue 3, pp 307–313 | Cite as

Measurement of deformations on concrete subjected to compression using image correlation

  • S. Choi
  • S. P. Shah
Article

Abstract

Because the nature of failure in concrete is complicated due to the material heterogeneity, a robust measuring method is essential to obtain reliable deformation data. A nondestructive displacement evaluation system using a digital image cross-correlation scheme, often called computer vision, is developed to make microscopic examinations of the fracture processes in concrete. This is a full-field measuring method that gives an accuracy within the micron range for a 100 mm × 75 mm viewing area. A feedback signal that combines the lateral and axial deformations provides a well-balanced imaging rate both before and after the peak load. Displacement vector diagrams or displacement contour maps of concrete reveal highly nonuniform deformations even in the elastic range. The processes of fracture in concrete are well defined at different deformation levels.

Key Words

Concrete feedback signal fracture digital image cross correlation nondestructive evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, S.H. and Shah, S.P., “Complete Stress-strain Curve of Concrete and Nonlinear Design,” Proc. Nonlinear Design of Concrete Structures, CSCE-ASCE-ACI-CEB International Symposium, Waterloo, 61–81 (1979).Google Scholar
  2. 2.
    Bruck, H.A., McNeill, S.R., Sutton, M.A. andPeters, W.H. III, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correlation,” EXPERIMENTAL MECHANICS,28 (3)261–267 (1989).Google Scholar
  3. 3.
    Castro-Montero, A., Jia, Z. andShah, S.P., “Evaluation of Damage in Brazilian Test Using Holographic Interferometry,”ACI Mat. J.,12 (3),268–275 (1995).Google Scholar
  4. 4.
    Choi, S., Thienel, K.-C. andShah, S.P., “Strain Softening of Concrete in Compression under Different End Constraints,”Magazine of Concrete Research,48 (175),103–115 (1996).Google Scholar
  5. 5.
    Chu, T.C., Ranson, W.F., Sutton, M.A. andPeters, W.H., “Applications of Digital-image-correlation Techniques to Experimental Mechanics,” EXPERIMENTAL MECHANICS,25 (3),232–244 (1985).CrossRefGoogle Scholar
  6. 6.
    Dawicke, D.S. andSutton, M.A., “CTOA and Crack-tunneling Measurements in Thin Sheet 2024-T3 Aluminum Alloy,” EXPERIMENTAL MECHANICS,34 (4),357–368 (1994).CrossRefGoogle Scholar
  7. 7.
    Franke, E.A., Wenzel, D.J. andDavidson, D.L., “Measurement of Microdisplacements by Machine Vision Photogrammetry (DISMAP),”Rev. Sci. Instrum.,62 (5),1270–1279 (1991).CrossRefGoogle Scholar
  8. 8.
    Gonzalez, R.C. andWoods, R.E., Digital Image Processing, Addison-Wesley, Reading, MA (1992).Google Scholar
  9. 9.
    Han, G., Sutton, M.A. andChao, Y.J., “A Study of Stationary Crack-tip Deformation Fields in Thin Sheets by Computer Vision,” EXPERIMENTAL MECHANICS,34 (2),125–140 (1994).CrossRefGoogle Scholar
  10. 10.
    Hillerborg, A., “Stability Problems in Fracture Mechanics Testing,”Fracture of Concrete and Rock: Recent Developments, eds. S.P. Shah, S.E. Swartz andB. Barr, Elsevier, London and New York, 369–378 (1989).Google Scholar
  11. 11.
    Hudson, J.A., Crouch, S.L. andFairhurst, C., “Soft, Stiff and Servocontrolled Testing Machines: A Review with Reference to Rock Failure,”Eng. Geology,6 (3),155–189 (1972).Google Scholar
  12. 12.
    Jansen, D., Shah, S.P. andRossow, E., “Stress Strain Result of Concrete from Circumferential Strain Feedback Control Testing,”ACI Mat. J. 92 (4),419–428 (1995).Google Scholar
  13. 13.
    Jia, Z. andShah, S.P., “Two-dimensional Electronic, Speckle Pattern Interferometry and Concrete Fracture Processes,” EXPERIMENTAL MECHANICS,34 (3),262–270 (1994).Google Scholar
  14. 14.
    Kotsovos, M.D., “Effect of Testing Techniques on the Post-ultimate Behavior of Concrete in Compression,”Mat. Struct.,16 (91),3–12 (1983).Google Scholar
  15. 15.
    Luo, P.F., Chao, Y.J., Sutton, M.A. andPeters, W.H. III, “Accurate Measurement of Three-dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision,” EXPERIMENTAL MECHANICS,33 123–132 (1993).Google Scholar
  16. 16.
    Maji, A.K., Tasdemir, M.A. andShah, S.P., “Mixed Mode Crack Propagation in Quasi-brittle Materials,”Eng. Fract. Mech.,38 (2–3),129–145 (1991).Google Scholar
  17. 17.
    Okubo, S. andNishimatsu, Y., “Uniaxial Compression Testing Using a Linear Combination of Stress and Strain as the Control Variable,”Int. J. Rock Mech. Mining Sci. & Geomech. Abstracts,22 (5),323–330 (1985).Google Scholar
  18. 18.
    Peters, W.H. andRanson, W.F., “Digital Imaging Techniques in Experimental Stress Analysis,”Opt. Eng.,21 (3),427–431 (1982).Google Scholar
  19. 19.
    Pratt, W.K., Digital Image Processing, 2nd ed., John Wiley, New York (1991).Google Scholar
  20. 20.
    Rosenfeld, A. andVandenburg, G.J., “Coarse-fine Template Matching,”IEEE Trans. Systems, Man and Cybernetics,SMC-2,104–107 (1977).Google Scholar
  21. 21.
    Shah, S. P., “Problems in Determining Stress-strain Characteristics of High Strength Concrete,” Proc. Fracture in Concrete-ASCE Annual Conf., Portland, OR (1980).Google Scholar
  22. 22.
    Shah, S.P., Gokoz, U. andAnsari, F., “An Experimental Technique for Obtaining Complete Stress-strain Curves for High Strength Concrete,”Cement, Concrete, and Aggregates,3 (1),22–27 (1981).Google Scholar
  23. 23.
    Shah, S.P. andSankar, R., “Internal Cracking and Strain-softening Response of Concrete under Uniaxial Compression,”ACI Mat. J.,84 (3),200–212 (1987).Google Scholar
  24. 24.
    Shao, Y., Li, Z. andShah, S.P., “Matrix Cracking and Interface Debonding in Fiber-reinforced Cement-matrix Composites,”J. Adv. Cement-based Mat.,1 (2),55–66 (1993).Google Scholar
  25. 25.
    Sutton, M.A., Bruck, H.A. andMcNeill, S.R., “Determination of Deformations Using Digital Correlation with the Newton Raphson Method and Partial Differential Correlations,” EXPERIMENTAL MECHANICS,29 (3),261–267 (1989).Google Scholar
  26. 26.
    Sutton, M.A., McNeill, S.R., Jang, J. andBabai, M., “Effects of Subpixel Image Restoration on Digital Correlation Error Estimates,”Opt. Eng.,27 (10),870–877 (1988).Google Scholar
  27. 27.
    Sutton, M.A., Turner, J.L., Bruck, H.A. andChae, T.A., “Full-field Representation of Discretely Sampled Surface Deformation for Displacement and Strain Analysis,” EXPERIMENTAL MECHANICS,31 (2),168–177 (1991).CrossRefGoogle Scholar
  28. 28.
    Sutton, M.A., Turner, J.L., Chao, Y.J., Bruck, H.A. andChae, T.L., “Experimental Investigations of Three-dimensional Effects Near a Crack Tip Using Computer Vision,”Int. J. Fract.,53,201–228 (1992).Google Scholar
  29. 29.
    Wang, F., Shah, S. P. andNaaman, A.E., “Stress-strain Curves for Normal and Lightweight Concrete in Compression,”J. Am. Concrete Inst.,75 (11),603–611 (1978).Google Scholar
  30. 30.
    Xi, Y., Bergstrom, T.B. andJennings, H.M., “Image Intensity Matching Technique: Application to the Environmental Scanning Electron Microscope,”Computational Mat. Sci.,2,249–260 (1994).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1997

Authors and Affiliations

  • S. Choi
    • 1
  • S. P. Shah
    • 1
  1. 1.NSF Center for ACBMEvanston

Personalised recommendations