Studia Geophysica et Geodaetica

, Volume 34, Issue 4, pp 327–341

# On the detection of weak strain parallel to the bedding by magnetic anisotropy: A mathematical model study

• František Hrouda
• Lenka Hrušková
Article

## Summary

Five mathematical models of the superposition of deformational magnetic fabric on sedimentary magnetic fabric are presented. These models are represented by various combinations of pure shear and simple shear. The diagrams of the variations in the main magnetic anisotropy parameters with strain can help in recognizing weak ductile deformation in sedimentary rocks.

## Keywords

Anisotropy Mathematical Model Magnetic Fabric Bedding Sedimentary Rock
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Реэюме

Пруво¶rt;umся nяmь мamемamuческuх мо¶rt;елеŭ суnерnозuцuu ¶rt;еформaцuонноŭ мa¶rt;нumноŭ mексmуры на осa¶rt;очноŭ мa¶rt;нumноŭ mексmуре. Мо¶rt;елu ире¶rt;сmвaлены в рaзных комбuнaцuях чuсmо¶rt;о с¶rt;вu¶rt;а ц иросmо¶rt;о с¶rt;вu¶rt;а. Дua¶rt;раaммы вaрuaцuŭ в ¶rt;лaвных naрaмеmрaх мa¶rt;нumноŭ aнuзоmроnuu с ¶rt;еформaцuеŭ мо¶rt;уm nомочь nрu рaсnознaвaнuu слaбых nлaсmuчных ¶rt;еформaцŭŭ в осa¶rt;очных nоро¶rt;aх.

## References

1. [1]
N. Hamilton, A. I. Rees: The anisotropy of magnetic susceptibility of the Franciscan rocks of the Diablo Range, Central California, Geol. Rundsch. 60 (1971), 1103.Google Scholar
2. [2]
F. Hrouda: Magnetic anisotropy of rocks and its application in geology and geophysics, Geophys. Surv. 5 (1982), 37.Google Scholar
3. [3]
F. Hrouda: Magnetic anisotropy variation in nappes: models and some examples from the West Carpathians. EOS Trans. AGU 66 (1985), 252.Google Scholar
4. [4]
J. S. Rathore: Strain to anisotropy correlations corrected for the Digico calibration error. Phys. Earth Planet. Inter. 51 (1988), 355.
5. [5]
A. I. Rees, W. A. Woodall: The magnetic fabric of sand and sandstones, Earth Planet. Sci. Lett. 25 (1975), 121.
6. [6]
A. I. Rees: Experiments on the production of transverse grain alignment in a sheared dispersion, Sedimentology 30 (1983), 437.Google Scholar
7. [7]
H. Ramberg: Superposition of homogeneous strain and progressive deformation in rocks, Bull. Geol. Inst. Univ. Uppsala 6 (1975), 35.Google Scholar
8. [8]
D. J. Sanderson: Models of strain variation in nappes and thrust sheets: a review, Tectonophysics 88 (1982), 201.
9. [9]
D. Elliott: Determination of finite strain and initial shape from deformed elliptical objects, Geol. Soc. Amer. Bull. 81 (1970), 2221.Google Scholar
10. [10]
W. H. Owens: Strain modification of angular density distributions, Tectonophysics 16 (1973) 249.
11. [11]
P. J. Shore, I. J. Duncan: Finite strains from non-coaxial paths. I. Computational techniques. Tectonophysics 110 (1984), 127.
12. [12]
J. Dvořák, F. Hrouda: The reflection of the deeper structure of the Artmanov — Osoblaha block (Nízký Jeseník Mountains, Czechoslovakia) in the magnetic anisotropy and deformation history of overlying Palaeczoic sediments, Věstník ÚÚG 50 (1975), 285.Google Scholar
13. [13]
F. Hrouda, Z. Stráník: The magnetic fabric of the Ždánice thrust sheet of the Flysch belt of the West Carpathians: sedimentological and tectonic implications, Sediment. Geol. 45 (1985), 125.
14. [14]
J. W. Graham: Signifiance of magnetic anisotropy in Appalachian sedimentary rocks, in: J. S. Steinhart and T. J. Smith (eds.) — The Earth beneath the continents, Geophys. Monogr. 10 (1966), 627.Google Scholar
15. [15]
W. H. Owens: Mathematical model studies of factors affecting the magnetic anisotropy of deformed rocks, Tectonophysics 24 (1974), 115.
16. [16]
F. Hrouda: The origin of cleavage in the light of magnetic anisotropy investigations, Phys. Earth Planet. Inter. 13 (1976), 132.
17. [17]
V. Jelínek: Characterization of magnetic fabric of rocks, Tectonophysics 79, 563.Google Scholar