Environmental Geochemistry and Health

, Volume 8, Issue 2, pp 31–54 | Cite as

The geochemistry of iodine — a review

  • Ronald Fuge
  • Christopher C. Johnson


Iodine has long been recognised as an important element environmentally. Despite this there are many gaps in our knowledge of its geochemistry and even where information is available much of this is based on old data which, in the light of recent data, are suspect.

Iodine forms few independent minerals and is unlikely to enter most rock-forming minerals. In igneous rocks its concentration is fairly uniform and averages 0.24 mg/kg. Sedimentary rocks tend to have higher concentrations with average iodine contents of:-recent sediments 5–200 mg/kg, carbonates 2.7 mg/kg, shales 2.3 mg/kg and sandstones 0.8 mg/kg. Organic-rich sediments are particularly enriched in iodine.

Soils, generally, are much richer in iodine than the parent rocks with the actual level being decided mainly by soil type and locality. Little soil iodine is water-soluble and much iodine is thought to be associated with organic matter, clays and aluminium and iron oxides. Most iodine in soils is derived from the atmosphere where, in turn, it has been derived from the oceans. Seawater has a mean iodine content of 58 μg/L, while non-saline surface waters have lower and very variable levels. Subsurface brines and mineral waters are generally strongly enriched in iodine.

Marine plants are frequently enriched in iodine while terrestrial plants have generally low contents. Iodine is essential for all mammals.

Consideration of the geochemical cycle of iodine reveals that its transfer from the oceans to the atmosphere is probably the most important process in its geochemistry.


Iodine Sandstone Geochemistry Shale Iron Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afanas'yev, G.D., Karpushin, V.M., Kachurin, V.F., Knyazeva, D.N., Miller, A.D. and Plosko, V.V. 1972. Halogens and carbon in ultramafic rocks of the Beden Pluton in the Northern Caucasus.Doklady of the Academy of Sciences U.S.S.R. 202, 35–37.Google Scholar
  2. Al-Ajely, K.O. 1985. Biogeochemical prospecting as an effective tool in the search for mineral deposits in Wales. Ph.D. thesis, University College of Wales, Aberystwyth.Google Scholar
  3. Al-Ajely, K.O., Andrews, M.J. & Fuge, R. 1984. Biogeochemical dispersion patterns associated with porphyry-style mineralization in the Coed y Brenin forest, North Wales,In Prospecting in areas of glaciated terrain 1984, 6th Symposium. Institute of Mining and Metallurgy, London.Google Scholar
  4. Alderman, G. & Jones, D.I.H. 1967. The iodine content of pastures.Journal of the Science of Food and Agriculture 18, 197–199.Google Scholar
  5. Amirdzhanyan, Zh.A. & Karapetyan, E.A. 1976. [Level of total and water-soluble iodine in Armenian soils].Trudy Nauchno-Issledovatel'skii Institut Pochvovedenie i Agrokhimiia, Yerevan 11, 261–269 (In Russian).Google Scholar
  6. Andrews, M.J., Bibby, J.M., Fuge, R. and Johnson, C.C. 1984. The distribution of iodine and chlorine in soils over lead-zinc mineralization. East of Glogfawr, Mid Wales.Journal of Geochemical Exploration 20, 19–32.CrossRefGoogle Scholar
  7. Aston, S.R. & Brazier, P.H. 1979. Endemic goitre, the factors controlling iodine deficiency in soils.The Science of the Total Environment 11, 99–104.CrossRefGoogle Scholar
  8. Balks, R. 1935 [The iodine question in Westphalia.]Landwirtschaftliches Jahrbuch 81, 939–1002 (In German).Google Scholar
  9. Barkley, R.A. and Thompson, T.G. 1960. The total iodine and iodate-iodine content of seawater.Deep Sea Research 7, 24–34.Google Scholar
  10. Beck, J. 1930 [Fixation of iodine in soils.]Zeitschrift fur Pflanzenernahrung. Düngung u Bodenkunde 16A, 57–65. (In German).Google Scholar
  11. Becker, V., Bennett, J.H. and Manuel, O.K. 1968. Iodine and uranium in ultrabasic rocks and carbonatites.Earth and Planetary Science Letters 4, 357–362.CrossRefGoogle Scholar
  12. —, 1972. Iodine and uranium in sedimentary rocks.Chemical Geology 9, 133–136.CrossRefGoogle Scholar
  13. Bennett, J.H. and Manuel, O.K. 1968. On iodine abundances in deep sea sediments.Journal of Geophysical Research 73, 2302–2303.Google Scholar
  14. Bentor, Y.K. 1969. On the evolution of subsurface brines in Israel.Chemical Geology 4, 83–110.CrossRefGoogle Scholar
  15. Blanchard, D.C. & Woodcock, A.H. 1957. Bubble formation and modification in the sea and its meteorological significance.Tellus 9, 145–158.Google Scholar
  16. Bojanowski, R. & Paslawska, S. 1970. On the occurrence of iodine in bottom sediments and interstitial waters of the southern Baltic Sea.Acta Geophysica Polonica 18, 277–286.Google Scholar
  17. Bruevich, S.V. and Egorova, V.A. 1973. [Iodine in atmospheric moisture in the Gelendzhik region.]Trudy-Institut Okeanologii Akademii Nauk SSSR 63, 57–66 (In Russian).Google Scholar
  18. Burgess, J.A. 1911. The halogen salts of silver and associated minerals at Tonopah, Nevada.Economic Geology 6, 13–21.Google Scholar
  19. — 1917. The halogen salts of silver at Wonder, Nevada.Economic Geology 12, 589–593.Google Scholar
  20. Butler, G.W. & Johnson, J.M. 1957. Factors influencing the iodine content of pasture herbage.Nature 179, 216–217.Google Scholar
  21. Cauer, H. 1929. [Prosence of iodine in rocks, soils and waters and its relation to goitre.]Landwirtschaftliches Jahrbuch 77, 251–274 (In German).Google Scholar
  22. — 1938. Chemische-bioklimatishe Studien in der Bretagne. II. Mitteilung: Beeinflussung des mitteleuro-päischen Jodmilieus durch die bretonische Jodinustrie auf dem Wege der Luft.Biochemische Zeitschrift 299, 69–91.Google Scholar
  23. Chamberlain, A.C. & Chadwick, R.C. 1966. Transport of iodine from atmosphere to ground.Tellus 18, 226–237.Google Scholar
  24. Chamberlain, A.C. & Dunster, H.J. 1958. Deposition of radioactivity in N.W. England from the accident at Windseale.Nature 182, 629–630.Google Scholar
  25. Chilean Iodine Educational Bureau (CIEB) 1952. Iodine content of foods. Shenval Press, London.Google Scholar
  26. — 1956. Geochemistry of Iodine. Shenval Press, London.Google Scholar
  27. Chitayeva, N.A., Miller, A.D., Grosse, Yu.I. & Christyakova, N.I. 1971. Iodine distribution in the supergene zone of the Gay Chalcopyrite deposit. Geochemistry International 1971, 426–436/Google Scholar
  28. Clarke, F.W. & Washington, H.S. 1924. The composition of the carth's crust.United States Geological Survey Professional Paper 127.Google Scholar
  29. Collins, A.G. 1969. Chemistry of some Andarko Basin brines containing high concentrations of iodide.Chemical Geology 4, 169–187.CrossRefGoogle Scholar
  30. Collins, A.G. & Egleson, G.C. 1967. Iodine abundance in oilfield brines in Oklahoma.Science 156, 934–935.Google Scholar
  31. Correns, C.W. 1956. The geochemistry of the halogens.In Ahrens, L.H., Rankama, K. & Runcorn, S.K. (Editors). Physices and Chemistry of the Earth I. Pergamon Press, London.Google Scholar
  32. Cosgrove, M.E. 1970. Iodine in the bituminous Kimmeridge shales of the Dorset coast. England.Geochimica et Cosmochimica Acta 34, 830–836.CrossRefGoogle Scholar
  33. Davidson, S., Passmore, R., Brock, J.F. & Truswell, A.S., 1975. Human Nutrition and Dieteties, 6th edition. Chapter 10. Churchill Livingstone. Edinburgh.Google Scholar
  34. De, S.K., Rao, S.S., Tripathi, C.M. & Rai, C. 1971. Retention of iodide by soil clays.Indian Journal of Agricultural Chemistry 4, 43–49.Google Scholar
  35. Dean, G.A. 1963. The iodine content of some New Zealand drinking waters with a note on the contribution of sea spray to the iodine in rain.New Zealand Journal of Science 6, 208–214.Google Scholar
  36. Department of Health and Social Security 1969, Report of public health medical subjects. London. No. 120.Google Scholar
  37. Downs, A.J. & Adams, C.J. 1976. The Chemistry of Chlorine, Bromine. Iodine and Astatine.Pergamon Texts in Inorganic Chemistry Volume 7. Pergamon Press, Oxford.Google Scholar
  38. Dubravčié, M. 1955. Determination of iodine in natural waters (sodium chloride as a reagent in the catalytic reduction of ceric ions).Analyst 80, 295–300.Google Scholar
  39. Duce, R.A., Wasson, J.T., Winchester, J.W. & Burns, F. 1963. Atmospheric iodine, bromine and chlorine.Journal of Geophysical Research 68, 3943–3947.Google Scholar
  40. Duce, R.A., Winchester, J.W. & Nahl, T.W. van 1965. Iodine, bromine and chlorine in the Hawaiian marine atmosphere.Journal of Geophysical Research 70, 1775–1799.Google Scholar
  41. — 1966. Iodine, bromine and chlorine in winter acrosols and snow from Barrow, Alaska.Tellus 18, 238–248.Google Scholar
  42. Duce, R.A., Zoller, W.H. & Moyers, J.L. 1973. Particulate and gaseous halogens in the Antaretic atmosphere.Journal of Geophysical Research 78, 7802–7811.Google Scholar
  43. Edmunds, W.M. 1971. Hydrogeochemistry of groundwaters in the Derbyshire Dome with special reference to trace constituents. Institute of Geological Sciences Report No. 71/7. HMSO.Google Scholar
  44. Ekpechi, O.L. 1967. Pathogenesis of endemic goitre in Eastern Nigeria.British Journal of Nutrition 21, 537–545.Google Scholar
  45. Ewy, Z., Pyska, H. & Styczynski, H. 1968. [Iodine content in milk and water in the Opole (Poland) area.].Roczniki Nauk Rolniczych Seria B 90, 399–408 (In Polish).Google Scholar
  46. Fellenberg, T. von 1923. Untersuchungen über das Vorkommen von Jod in der Natur.I. Biochemische Zeitschrift 139, 371–451.Google Scholar
  47. — 1924. Untersuchungen über das Vorkommen von Jod in der Natur.VII. Biochemische Zeitschrift 152, 153–171.Google Scholar
  48. Fellenberg, T. von and Lunde, G. 1926. Umersuchungen über das Vorkommen von Jod in der Natur. x. Beitrag zur Geochemie des Jods.Biochemische Zeitschrift 175, 162–171.Google Scholar
  49. — 1927. Contribution a la geochimie de l'iode.Norsk Geologisk Tidsskrift 9, 48–64.Google Scholar
  50. Floyd, P.A. & Fuge, R. 1982. Primary and secondary alkali and halogen element distribution in leeland research drilling project basalts from Eastern Iceland.Journal of Geophysical Research 87, 6477–6488.Google Scholar
  51. Fuge, R. 1974a. Chapter 53, Iodine.In Wedepohl, K.H. (Editor) Handbook of Geochemistry, Springer, Berlin.Google Scholar
  52. — 1974b. Chapter 17. Chlorine.In Wedepohl, K.H. (Editor). Handbook of Geochemistry. Springer, Berlin.Google Scholar
  53. — 1974c. Chapter 35. Bromine.In Wedepohl, K.H., (Editor), Handbook of Geochemistry. Springer, Berlin.Google Scholar
  54. Fuge, R., Andrews, M.J. & Johnson, C.C. 1986. Chlorine and iodine, potential pathfinder elements in exploration geochemistry.Applied Geochemistry,1, 111–116.CrossRefGoogle Scholar
  55. Fuge, R. & Johnson, C.C., 1979. Iodine content of some geochemical reference samples.Geostandards Newsletter 3, 51–52.Google Scholar
  56. — 1984. Evidence for the chalcophile nature of iodine.Chemical Geology 43, 347–352.CrossRefGoogle Scholar
  57. Fuge, R., Johnson, C.C. & Phillips, W.J. 1978. Iodine in granitic and associated rocks.Chemical Grology 22, 347–352.Google Scholar
  58. Gallego, R. & Oliver, S. 1959a [Iodine in soils.] Anales de edafologia y fisiologia vegetal (Madrid)18, 207–238 (In Spanish).Google Scholar
  59. — 1959b [Relations between the iodine content and composition of soils]. Anales de edafologia y fisiologia vegetal (Madrid)18, 275–288.Google Scholar
  60. Germann, K., Pagel, J.M. & Parekh, P.P. 1979. Iodine in Karst-type phosphorites from the Lahn Region, Germany.Chemical Geology 25, 305–316.CrossRefGoogle Scholar
  61. Gilbert, F.A., 1957. Mineral Nutrition and the Balance of Life. University Press, Oklahoma.Google Scholar
  62. Gillie, R.B. 1971. Chapter 9 Endemic goitre.In Food Readings from Scientific American. 1973, Freeman, San Francisco.Google Scholar
  63. Goldberg, W.M. 1978. Chemical changes accompanying maturation of the connective tissue skeletons of gorgonian and antipatharian corals.Marine Biology 49, 203–210.CrossRefGoogle Scholar
  64. Goldschmidt, V.M. 1954. Geochemistry. Oxford University Press, London.Google Scholar
  65. Goles, G.G. & Anders, E. 1961. On the geochemical character of iodine in meteorites.Journal of Geophysical Research 66, 3075–3077.Google Scholar
  66. Greenwood, N.N. & Earnshaw, A. 1984. Chemistry of the Elements. Pergamon Press, Oxford.Google Scholar
  67. Gromakova, L.M. & Sidorova, N.N. 1975. [Iodine levels in the soil and feed crops of the northern agropedological zone of the Tartar ASSR.] Uchenye Zapiski Kazanskii Veterinariia Institut121, 50–52 (In Russian).Google Scholar
  68. Gulyayeva, L.A. & Itkina, E.S. 1967. Migration of halogens in sedimentary rocks. Khimiya Zemnoi Kory, Mosow, 1964. Translated in: — Vinogradov, A.P. (Editor), Geochemistry of the Earth's Crust, volume 2, 472–486. Israel program for scientific translations, Jerusalem.Google Scholar
  69. Hamid, A. & Warkentin, B.P. 1967. Retention of I-131 used as a tracer in water-movement studies.Soil Science 104, 279–282.Google Scholar
  70. Heath, R.L. 1971.In Weast, R.C. (Editor) Handbook of Chemistry and Physics 52nd edition. The Chemical Rubber Company Ltd., Cleveland, Ohio.Google Scholar
  71. Heymann, J.A. 1925. [Iodine in water supply undertakings.]Water en Gas 9, 39–54 (In German).Google Scholar
  72. Hirai, K. & Takagi, B. 1937. [Iodine content of soils.] Buletin Science Fakultat. Terkultura. Kjusu Imperial University7, 245–254 (In Japanese).Google Scholar
  73. Honda, F., Mizutani, Y., Sugiura, T. & Oana, S. 1966. A geochemical study of iodine in volcanic gases.Bulletin of the Chemical Society of Japan 39, 2690–2695.Google Scholar
  74. Irinevich, A.D. & Fil'kov, V.A. 1973. [Relation between iodine content and individual properties of soils.] Tezisy Doklady Nauchn Konferens Posvyashcha 100-Letiya Dnya Rozhdeniya Akademika N.A. Dimo 1973, 91–93. Fil'kov, V.A. (Editor) (In Russian).Google Scholar
  75. Irinevich, A.D., Rabinovich, I.Z. & Fil'kov, V.A. 1970. [Iodine in Moldavian soils] Pochvovedenie, 58–68 (In Russian).Google Scholar
  76. Itkina, E.S. & Lygalova, V.M. 1964. Geochemistry of iodine and bromine in the Carboniferous horizon and in the Domanik and Bavly formations of somo petroliferous areas of Bashkiria.In Gulyayeva, L.A. (Editor) The Geochemistry of Oil and Oil Deposits. Academy of Sciences, USSR 1962: Israel Program for Scientific Translations Jerusalem.Google Scholar
  77. Johnson, C.C. 1980. The geochemistry of iodine and a preliminary investigation into its potential use as a pathfinder element in geochemical exploration. Ph.D. thesis University College of Wales, Aberystwyth.Google Scholar
  78. Jones, S.D. 1981. Studies on the speciation of iodine in rain and freshwaters. Ph.D. thesis, University of Wales, Bangor.Google Scholar
  79. Kikkawa, K. & Shiga, S. 1966. Relations between halogen contents of hot spring water [1]. Special Contributions. Geophysical Institute, Kyoto University,No. 6, 173–185.Google Scholar
  80. Knapp, H.A. 1963. I-131 in fresh milk and human thyroids following a single deposition of nuclear test fallour.Nature 202, 534–537.Google Scholar
  81. Kogarko, L.N. & Gulyayeva, L.A. 1965. Geochemistry of the halogens in the alkalic rocks of the Lovozero Massif (Kola Peninsula). Geochemistry International 1965, 729–740.Google Scholar
  82. Köhler, R. 1928. [Studies of the iodine content of soils and the uptake of iodine by plants.] Mitteilungen der preuss Geologischen LandesanstalltNo. 7, 11–29 (In German).Google Scholar
  83. Konovalov, G.S. 1959. [Removal of trace elements by rivers of the USSR]. Doklady Akademia Nauk SSSR129, 912–915 (In Russian).Google Scholar
  84. Kuenen, Ph.H. 1950. Marine Geology. Wiley, New York.Google Scholar
  85. Kuroda, P.K. & Crouch, W.H. 1962. On the chronology of the formation of the solar system. 2. Iodine in terrestrial rocks and the Xe-129/Xe-136 formation interval of the Earth.Journal of Geophysical Research 67, 4863–4866.Google Scholar
  86. Låg, J. & Steinnes, E. 1976. Regional distribution of halogens in Norwegian forest soils.Geoderma 16, 317–325.CrossRefGoogle Scholar
  87. Lapp, M.A. & Sudov, B.A. 1963. [Prospecting for deep-seated ore bodies and deposits by using broad dispersion haloes.]Soviet Geology 6, 113–119 (In Russian).Google Scholar
  88. Lininger, R.L., Duce, R.A., Winchester, J.W. & Matson, W.R. 1966. Chlorine, bromine, iodine and lead in aerosols from Cambridge, Massachusetts.Journal of Geophysical Research 71, 2457–2463.Google Scholar
  89. Liss, P.S., Herring, J.R. & Goldberg, E.D. 1973. The iodide-iodate system in seawater as a possible measure of redox potential.Nature Physical Sciences 242, 108–109.Google Scholar
  90. Luten, J.B., Woittiez, J.R.W., Das, H.A. & De Ligny, C.L. 1978. The determination of iodate in rain-water.Journal of Radioanalytical Chemistry 43, 175–185.Google Scholar
  91. Mackereth, F.J.H. 1966. Directors Report — Chemistry. Report of the Freshwater Biological Association34, 26–27.Google Scholar
  92. Magomedova, L.A., Zyrin, N.G. & Salmanov, A.B. 1970. [Iodine in the soils and rocks of mountainous Dagestan.]Agrokhimiya No. 1, 117–125 (In Russian).Google Scholar
  93. Mahadeva, K., Seneviratne, D.A. & Jayatilleke, D.B. 1968. Further studies on the problem of goitre in Ceylon.British Journal of Nutrition 22, 527–534.CrossRefGoogle Scholar
  94. Martell, E.A. 1964. I-131 tallout from underground tests.Science 143, 126–129.Google Scholar
  95. Martens, C.S. & Harriss, R.C. 1970. Mechanisms of iodine injection from the sea surface. AEC Symposium SeriesNo. 22, 319–324.Google Scholar
  96. Mason, B. & Moore, C.B. 1982. Principles of Geochemistry, 4th edition. Wiley, New York.Google Scholar
  97. Masonet al. 1945. Quoted by Chilean Iodine Educational Bureau, 1956.Google Scholar
  98. McCarthy, J.H. 1972. Mercury vapor and other volatile components in the air as guides to ore deposits.Journal of Geochemical Exploration 1, 143–162.CrossRefGoogle Scholar
  99. McClendon, J.F. 1939. Iodine and the Incidence of Goitre, Oxford University Press, London.Google Scholar
  100. Mitchell, J.H. 1941. Sources and distribution of iodine in South Carolina with special reference to types of soil and rocks.Soil Science 52, 365–371.Google Scholar
  101. Miyake, Y. & Tsunogai, S. 1963. Evaporation of iodine from the ocean.Journal of Geophysical Research 68, 3989–3993.Google Scholar
  102. Moyers, J.L., Zoller, W.H. & Duce, R.A. 1971. Gaseous iodine measurements and their relationship to particulate lead in a polluted atmosphere.Journal of Atmospheric Science 28, 95–98.CrossRefGoogle Scholar
  103. Mun, A.I. & Basilevich, Z.A. 1963. Iodine in surface brines and waters of Central Kazakhstan.Geochemistry 1963, 528–534.Google Scholar
  104. — 1964. Some characteristics of the distribution of iodine in lake muds.Geochemistry 1964, 451–458.Google Scholar
  105. Newton, H.P. & Toth, S.J. 1951. Iodine content of some soils and plants of New Jersey.Soil Science 71, 175–179.Google Scholar
  106. Nissenbaum, A. 1977. Minor and trace elements in Dead Sea water.Chemical Geology 19, 99–111.CrossRefGoogle Scholar
  107. Pennington, W. & Lishman, J.P. 1971. Iodine in lake sediments in Northern England and Scotland.Biological Revue Cambridge Philosophical Society 46, 279–313.Google Scholar
  108. Perel'man, A.I. 1977. Geochemistry of Elements in the Supergene zone. Keterpress Enterprises, Jerusalem.Google Scholar
  109. Price, N.B., & Calvert, S.E. 1973. The geochemistry of iodine in oxidized and reduced recent marine sediments.Geochimica Cosmochimica Acta 37, 2149–2158.CrossRefGoogle Scholar
  110. Prister, B.S., Grigor'eva, T.A., Perevezentsev, V.M., Tikhomirov, F.A., Sal'nikov, V.G., Ternovskaya, I.M. & Karabin, T. 1977. [Behaviour of iodine in soils]Pochvovedenie 6, 32–40 (In Russian).Google Scholar
  111. Proskuryakova, G.F., Ivanov, N.A. & Salangina, N.D. 1969a. [Iodine levels in soils of the Sverdlovsk District.] Trudy Sverdlovsk Sel'Skokhoz Institut15, 328–332 (In Russian).Google Scholar
  112. Proskuryakova, G.F., Ivanov, N.A. & Reshetnikov, A. 1969b. [Iodine level in the soils of the 1st section of the scientific research station of the Sverdlovsk Agri. Inst.] Trudy Sverdlovsk Sel'skokhoz Institut15, 333–336 (In Russian).Google Scholar
  113. Raja, M.E. & Babcock, K.L., 1961. On the soil chemistry of radioiodine.Soil Science 91, 1–5.Google Scholar
  114. Rankama, K. & Sahama, T.G. 1950. Geochemistry. University Press, Chicago.Google Scholar
  115. Reith, J.F. 1933. [Iodine content of Dutch soils in connection with some geological and agricultural questions] Zeitschrift fur Pflanzenernährung, Düngung u Bodenkunde31A, 215–224. (In German).Google Scholar
  116. Remington, R.E., Culp, F.E. & Kolnitz, H. von, 1929. The potato as an index of iodine distribution.Journal of the American Chemical Society 51, 2942–2947.CrossRefGoogle Scholar
  117. Rich, J.L. 1942. Physiographic setting of the nitrate deposit of Tarapaca. Chile: Its bearing on the problem of the origin and concentration.Economic Geology 37, 188–214.Google Scholar
  118. Roedder, E. 1962. Ancient fluids in crystals.Scientific American 207, 38–47.Google Scholar
  119. Saenko, G.N., Kravtsova, I.I., Ivanenko, V.V. & Sheludko, S.I. 1978. Concentration of iodine and bromine by plants in the seas of Japan and Okhotsk.Marine Biology (Berlin) 47, 243–250.Google Scholar
  120. Safrazbekyan, E.A., 1970. [Iodine level in chestnut soils and chernozems in Armenia.]Biologicheskii Zhurnal Armenii 23, 89–93 (In Russian).Google Scholar
  121. Sazonov, N.N., 1970. [Contents and migration of iodine in central Yakutia soils.] Referatwnyi Zhurnal Geologiia V 1970, Abstract No. IV36 (In Russian).Google Scholar
  122. Schnepfe, M.M. 1972. Determination of total iodine and iodate in seawater and in various evaporites.Analytica Chimica Acta 58, 83–89.CrossRefGoogle Scholar
  123. Schutyzer, P., Maenhaut, W. & Dams, R., 1978. Instrumental neutron activation analysis of dry atmospheric fallout and rainwater.Analytica Chimica acta 100, 75–85.Google Scholar
  124. Selivanov, L.S. 1939. [The geo- and biochemistry of scattered bromine. I. Bromine in plants and fresh water]. Travaux Laboratoire de Biogeochimie, Academic des sciences U.R.S.S.5, 113–120 (In French).Google Scholar
  125. Shacklette, H.T. & Cuthbert, M.E. 1967. Iodine content of plant groups as influenced by variation in rock and soil type.In United States Geological Society Special Paper.No. 90, 30–46.Google Scholar
  126. Shishkina, O.V. & Pavlova, G.A. 1965. Iodine distribution in marine and oceanic bottom muds and in their pore fluids. Geochemistry International 1965, 559–563.Google Scholar
  127. Sinitskaya, G.I. 1969. [Iodine content in the Zeya-Bureya Plain soils] Uchenye Zapiski, Dal'nevost Gos Universitet Khimii No.27, 72–88 (In Russian).Google Scholar
  128. Smith, J.D. & Butler, E.C.V. 1979. Speciation of dissolved iodine in estuarine waters.Nature 277, 468–469.Google Scholar
  129. Sobornikova, I.G. 1977. [Iodine distribution in soils and water of the northern Sea of Azov region and Western Ciscaucasus]. Izvestiia Ser-Kavk Nauchno Tsentra Vysshie Shk Seri Estestva Nauk5, 80–83 (In Russian).Google Scholar
  130. Stoklasa, J. 1927. [The distribution of iodine in nature and its physiological significance in plant and animal organisms.] Zeitschrift für angewandte Chemie40, 20–27 (In German).Google Scholar
  131. Strock, L.W. 1934 Kristallstruktur des Hoch temperatur — Jodsilbers α-AgJ. Zeitschrift fur Physikalische Chemie25B (6), 441–459.Google Scholar
  132. Sugawara, K. 1967. Migration of elements through phases of the hydrosphere and atmosphere.In Vinogradov, A.P. (Editor) Chemistry of the Earth's Crust2, 501–510. Program for Scientific Translations Jerusalem.Google Scholar
  133. Sugawara, K. & Terada, K. 1957. Iodine distribution in the western Pacific Ocean.The Journal of Earth Sciences, Nagoya University 5, 81–102.Google Scholar
  134. Truesdale, V.W. 1974. The chemical reduction of iodine in seawater.Deep Sea Research 21, 761–766.Google Scholar
  135. — 1975. Reactive and unreactive iodine in seawater — a possible indication of an organically bound iodine fraction.Marine Chemistry 3, 111–119.CrossRefGoogle Scholar
  136. — 1978a. Iodine in inshore and off-shore marine waters.Marine Chemistry 6, 1–13.Google Scholar
  137. — 1978b. The automatic determination of iodate - and total — iodine in seawater.Marine Chemistry 6, 253–273.Google Scholar
  138. Truesdale, V.W. & Smith, P.J. 1979. A comparative study of three methods for the determination of iodate in seawater.Marine Chemistry 7, 133–140.CrossRefGoogle Scholar
  139. Tsunogai, S. 1971. Iodine in the deep water of the ocean.Deep Sea Research 18, 913–919.Google Scholar
  140. Tsunogai, S. & Sase, T. 1969. Formation of iodine — iodine in the ocean.Deep Sea Research 16, 489–496.Google Scholar
  141. UKAEA 1975. Evidence submitted 1974/75 to the Royal Commission on Environmental Pollution. HMSO, London.Google Scholar
  142. Underwood, E.J. 1971. Trace Elements in Human and Animal Nutrition. 3rd edition. Academic Press, New York.Google Scholar
  143. Vernadsky, V.I. 1924. La geochimie, Paris.Google Scholar
  144. Vinogradov, A.P. 1939. [Origin of iodine- and bromine-containing waters in petroliferous regions]. Trudy — Biogeokhimicheskaia Laboratoriia Akademii Nauk SSSR5, 33–46 (in Russian).Google Scholar
  145. — 1959. The Geochemistry of Rare and Dispersed Chemical Elements in Soils. 2nd edition. Consultants Bureau, New York.Google Scholar
  146. Vinogradov, A.P. & Lapp, M.A. 1971. [Use of iodine haloes to search for concealed mineralisation.] Vestnik-Leningradskii Universitet Seriia Geologii i Geografii. No. 24, 70–76 (In Russian).Google Scholar
  147. Vought R.L., Brown, F.A. & London, W.T. 1970. Iodine in the environment.Archives of Environmental Health 20, 516–522.Google Scholar
  148. Vought, R.L., London, W.T. & Stebbing, G.E.T. 1967. Endemic goiter in Northern Virginia.Journal of Clinical Endocrinology 27, 1381–1389.Google Scholar
  149. Weast, R.C., 1971. Handbook of Chemistry and Physics 52nd edition. The Chemical Rubber Co. Ltd., Cleveland Ohio.Google Scholar
  150. White, D.E., Hem, J.D. & Waring, G.A. 1963. Chemical composition of sub-surface waters.In Fleischer, M. (Editor). Data of Geochemistry. 6th edition. United States Geological Survey Professional paper 440-F.Google Scholar
  151. Whitehead, D.C., 1973. Studies on iodine in British soils.Journal of Soil Science 24, 260–270.Google Scholar
  152. — 1974. The influence of organic matter, chalk and sesquioxides on the solubility of iodide, elemental iodine and iodate incubated with soil.Journal of Soil Science 25, 461–470.Google Scholar
  153. — 1978. Iodine in soil profiles in relation to iron and aluminium oxides and organic matter.Journal of Soil Science 29, 88–94.Google Scholar
  154. — 1979. Iodine in the U.K. environment with particular reference to agriculture.Journal of Applied Ecology 16, 269–279.Google Scholar
  155. — 1981. The volatilisation, from soils and mixtures of soil components, of iodine added as potassium iodide.Journal of Soil Science 32, 97–102.Google Scholar
  156. — 1984. The distribution and transformations of iodine in the environment.Environment International 10, 321–339.CrossRefGoogle Scholar
  157. Wilkins, L. 1960. The thyroid gland.Scientific American. March 1960, 119–129.Google Scholar
  158. Wilson, D.C. 1954. Goitre in Ceylon and Nigeria.British Journal of Nutrition 8, 90–99.Google Scholar
  159. Yeshchenko, O.P. & Trofimov, N.N. 1970. [Iodine as an indicator element for lead-zinc mineralisation in North Osetia.] Isvestiia-Vysshie Uchebnye Zavedeniia Geologiia i Razvedka13, 74–82. (In Russian).Google Scholar
  160. Zyrin, N.G. & Imadi, T.Kh. 1967. [Iodine in soils of the Russian Plain and Crimea.] Agrokhimiia No. 1, 100–116 (In Russian).Google Scholar
  161. Ronald Fuge, Geology Department, University College of Wales, Aberystwyth, Dyfed SY23 3DB.Google Scholar
  162. Christopher C. Johnson, British Geological Survey, Keyworth, Nottingham NG12 5GG. (Present address: Directorate of Mineral Resources. Jalan Diponegoro, Bandung, Indonesia.Google Scholar

Copyright information

© Science and Technology Letters 1986

Authors and Affiliations

  • Ronald Fuge
    • 1
  • Christopher C. Johnson
    • 1
  1. 1.University College of Wales and British Geological SurveyUK

Personalised recommendations