Advertisement

Mathematical Notes

, Volume 59, Issue 2, pp 133–140 | Cite as

Linear widths of Hölder-Nikol'skii classes of periodic functions of several variables

  • É. M. Galeev
Article

Abstract

We consider the linear widths λ N (W p r (Tn), Lq) and λ N (H p r (Tn), Lq) of the classesW p r (Tn) andH p r (Tn) of periodic functions of one or several variables in the spaceLq. For the Sobolev classesW p r (Tn) of functions of one or several variables, we state some well-known results without proof; for the Hölder-Nikol'skii classesH p r (Tn), we state some well-known results, prove some new results, and present some previously unpublished proofs.

Keywords

Periodic Function Linear Width Unpublished Proof Skii Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Tikhomirov, “Widths of sets in a function space and the theory of best approximations,”Uspekhi Mat. Nauk [Russian Math. Surveys],15, No. 3, 81–120 (1960).zbMATHGoogle Scholar
  2. 2.
    R. S. Ismagilov, “Widths of sets in linear normalized spaces and approximation of functions by trigonometric polynomials,”Uspekhi Mat. Nauk [Russian Math. Surveys],29, No. 3, 161–178 (1974).zbMATHMathSciNetGoogle Scholar
  3. 3.
    E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets,”Mat. Sb. [Math. USSR-Sb.],120, 120–189 (1983).zbMATHMathSciNetGoogle Scholar
  4. 4.
    B. S. Kashin, “Some properties of matrices of bounded operators from the space ℓ2n into ℓ2m,”Izv. Akad. Armyan. SSR, Ser. Mat. [Soviet J. Contemporary Math. Anal.],XV, No. 5, 379–394 (1980).MathSciNetGoogle Scholar
  5. 5.
    É. M. Galeev, “Kolmogorov widths of classesW p¯randH p¯r of periodic functions of several variables in the spaceL q,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],49, No. 5, 916–934 (1985).zbMATHMathSciNetGoogle Scholar
  6. 6.
    A. Zygmund,Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge (1959).Google Scholar
  7. 7.
    É. M. Galeev, “Linear widths of classes of periodic functions of several variables,”Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.], No. 4, 13–16 (1987).zbMATHMathSciNetGoogle Scholar
  8. 8.
    É. M. Galeev, “Kolmogorov widths of classes of periodic functions of one or several variables,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],54, No. 2, 418–430 (1990).MathSciNetGoogle Scholar
  9. 9.
    A. D. Izaak, “Kolmogorov widths in finite-dimensional spaces with mixed norms,”Mat. Zametki [Math. Notes],55, No. 1, 43–52 (1994).zbMATHMathSciNetGoogle Scholar
  10. 10.
    V. E. Maiorov, “Linear widths of Sobolev classes,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],243, No. 5, 1127–1130 (1978).MathSciNetGoogle Scholar
  11. 11.
    K. Höllig,Approximationschalen von Sobolev Einbettungen, Dissertation, Bonn (1979).Google Scholar
  12. 12.
    V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials and the widths of certain function classes,”Izv. Akad. Nauk SSSR, Ser. Mat. [Math. USSR-Izv.],49, No. 5, 986–1030 (1985).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • É. M. Galeev
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations