, Volume 48, Issue 2, pp 191–201 | Cite as

A half-explicit Runge-Kutta method of order 5 for solving constrained mechanical systems

  • V. Brasey


A new half-explicit Runge-Kutta method for the numerical integration of differential-algebraic systems of index 2 is constructed. It is particularly efficient for the solution of the equations of motion of constrained mechanical systems. Numerical experiments and comparisons with other codes (DASSL, MEXX) demonstrate the efficiency of the new method.

AMS (MOS) Subject Classification


Key words

Differential-algebraic systems Runge-Kutta methods order conditions constrained multibody systems 

Ein halb-explizites Runge-Kutta Verfahren der Ordnung 5 zur Behandlung von mechanischen Systemen mit Nebenbedingungen


Ein neues halb-explizites Runge-Kutta Verfahren zur numerischen Integration von Algebro-Differentialgleichungen von Index 2 wird hergeleitet. Es ist besonders effizient für die numerische Lösung der Bewegungsgleichungen von mechanischen Systemen mit Nebenbedingungen. Numerische Beispiele und Vergleiche mit anderen Programmen (DASSL, MEXX) zeigen die Effizienz des neuen Verfahrens.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alishenas, T.: Numerical treatment of differential-algebraic stabilization of mechanical systems with constraints and invariants. Talk given at the 1990 ODE Conference, Helsinki, June 18–22, 1990.Google Scholar
  2. [2]
    Brasey, V., Hairer, E.: Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2. Report, Dept. de mathématiques Université de Genève, 1991.Google Scholar
  3. [3]
    Brenan, K. E., Campbell, S. L., Petzold, L. R.: Numerical solution of initial-value problems in differential-algebraic equations. New York: North-Holland 1989.Google Scholar
  4. [4]
    Brenan, K. E., Engquist, L. R.: Backward differentiation approximations of nonlinear differential/algebraic systems. Math. Comput.51, 659–676 (1988).MathSciNetGoogle Scholar
  5. [5]
    Brenan, K. E., Petzold, L. R.: The numerical solution of higher index differential/algebraic equations by implicit Runge-Kutta methods. SIAM J. Numer. Anal.26, 976–996 (1989).CrossRefMathSciNetGoogle Scholar
  6. [6]
    Führer, C., Leimkuhler, B.: Numerical solution of differential-algebraic equations for constrained mechanical motion. Numer. Math.59, 55–69 (1991).CrossRefMathSciNetGoogle Scholar
  7. [7]
    Gear, C. W., Gupta, G. K., Leimkuhler, B.: Automatic integration of Euler-Lagrange equations with constraints. J. Comp. Appl. Math.12, 13, (1985), 77–90 (1985).MathSciNetGoogle Scholar
  8. [8]
    Haug, E. J.: Computer aided kinematics and dynamics of mechanical systems. Volume I: Basic Methods. Boston: Allyn and Bacon 1989.Google Scholar
  9. [9]
    Hairer, E., Lubich, Ch., Roche, M.: The numerical solution of differential-algebraic systems by Runge-Kutta methods. Berlin, Heidelberg, New York, Tokyo: Springer 1989 (Springer Lecture Notes in Mathematics 1409).Google Scholar
  10. [10]
    Hairer, E., Nørsett, S. P., Wanner, G.: Solving ordinary differential equations I. Nonstiff problems. Heidelberg, New York, Tokyo: Springer 1987 (Comp. Mathematics, 8).Google Scholar
  11. [11]
    Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff and differential-algebraic problems. Berlin, Heidelberg, New York, Tokyo: Springer 1991 (Computational Mathematics, 14).Google Scholar
  12. [12]
    Lötstedt, P., Petzold, L.: Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas. Math. Comput.46, 491–516 (1986).Google Scholar
  13. [13]
    Lubich, Ch.:h 2-extrapolation methods for differential-algebraic systems of index 2. Impact Comp. Sci. Eng.1, 260–268 (1989).zbMATHGoogle Scholar
  14. [14]
    Lubich, Ch.: Extrapolation integrators for constrained multibody systems. Report, University of Innsbruck, 1990.Google Scholar
  15. [15]
    März, R.: Higher-index differential-algebraic equations: analysis and numerical treatment. Banach Center Publ. XXIV.Google Scholar
  16. [16]
    Ortega, J. M., Rheinboldt, W. C.: Iterative methods of nonlinear equations in several variables. New York: Academic Press 1970.Google Scholar
  17. [17]
    Potra, F. A.: Multistep method, for solving constrained equations of motion. Report, University of Iowa, 1991.Google Scholar
  18. [18]
    Potra, F. A., Rheinboldt, W. C.: On the numerical solution of the Euler-Lagrange equations. Mech. Struct. Mach.19, 1 (1991).MathSciNetGoogle Scholar
  19. [19]
    Schiehlen, W. (ed.): Multibody systems handbook. Berlin Heidelberg, New York, Tokyo: Springer (1990).Google Scholar
  20. [20]
    Wolfram, S.: Mathematica. A system for doing mathematics by computer. Redwood City, Menlo Park, Reading, New York, Amesterdam, Don Mills, Sydney, Bonn, Madrid, Singapore, Tokyo, San Juan, Wo Kingham: Addison Wesley 1988.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. Brasey
    • 1
  1. 1.Section de MathematiquesUniversite de GeneveGeneve 24Switzerland

Personalised recommendations