Advertisement

Journal of Biological Physics

, Volume 5, Issue 1–2, pp 3–23 | Cite as

Electroculture

  • Herbert A. Pohl
Article

Abstract

Electroculture, the practice of applying strong electric fields or other sources of small air ions to growing plants, has potential to markedly increase crop production and to speed crop growth. The considerable evidence for its effectiveness, and the studies of the mechanisms for its actions are discussed.

Keywords

Polymer Statistical Physic Crop Production Crop Growth Considerable Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beccaria, G. 1775. Della Elettricità Terrestre Atmosferica a Cielo Sereno, Torino.Google Scholar
  2. 2.
    Bertholon, M. 1783. De L’electricitè des vegetaux, Paris.Google Scholar
  3. 3.
    Gardini, C. 1784. De Influxu Electricitatis Atmosphericae in Vegetantia, Turin, Dissertation.Google Scholar
  4. 4.
    Ingenhausz, J. 1788. Lettre à M. Molitor au sujet de l’influence de l’électricité atmospherique sur les vegetaux, J. Physique, l’abbé Rozier.Google Scholar
  5. 5.
    Grandeau, L. 1878. Comt. rend. Soc. biol.37, pp. 60, 285, 939.Google Scholar
  6. 6.
    Sturgeon, W. 1846. On the Electro-culture of Farm Crops, J. Highland and Agric. Soc., 262–299.Google Scholar
  7. 7.
    Lemström, S. 1904. Electricity in Agriculture and Horticulture, London.Google Scholar
  8. 8.
    Gassner, G. 1907. Ber. bot. Ges.25, 26.Google Scholar
  9. 9.
    Blackman, V. H., A. T. Legg, and F. G. Gregory. 1923. Proc. Roy. Soc. London, Series B95, 214.ADSGoogle Scholar
  10. 10.
    Blackman, V. H. 1924. Field Experiments in Electro-culture. J. Agric. Sci.14, 240–257.Google Scholar
  11. 11.
    Collins, G., L. H. Flint, and J. W. McLane. 1929. J. Agric. Res.38, 585.Google Scholar
  12. 12.
    Briggs, L. J., A. B. Campbell, R. H. Heald, and L. H. Flint. 1926. Electroculture. U. S. Dept. of Agric. Bulletin #1379.Google Scholar
  13. 13.
    Briggs, L. J. 1938. in: Physiology of Plants, Ed. by W. Seifriz. J. Wiley and Sons, New York.Google Scholar
  14. 14.
    Krueger, A. P., S. Kotaka, and P. C. Andriese. 1964. Effect of Air Containing O2, O2+, CO2 on the Growth of Seedlings ofHordeum vulgaris. Int. J. Biometeor.8, 17.Google Scholar
  15. 15.
    Murr, L. E. 1964. Mechanism of Plant-cell Damage in an Electrostatic Field. Nature,201, 1305–1306.Google Scholar
  16. 16.
    Murr, L. E. 1965. Biophysics of Plant Growth in an Electrostatic Field. Nature,206, 467–470.Google Scholar
  17. 17.
    Krueger, A. P. 1969. Preliminary Consideration of the Biological Significance of Air Ions. Scientia,104, 460–476.Google Scholar
  18. 18.
    Clark, W. M. 1937. Electrical Polarity and Auxin Transport. Plant Physiol.,12, 409.Google Scholar
  19. 19.
    Smith, R. F., and W. H. Fuller. 1961. Identification and Mode of Action of a Component of Positively-ionized Air Causing Enhanced Growth in Plants. Plant Physiol.36, 747–51.Google Scholar
  20. 20.
    Went, F. W. 1932. Eine botanische Polarizationsteorie. Jahrb. Wiss. Bot.,76, 528–557.Google Scholar
  21. 21.
    Nyrop, J. E. 1946. A Specific Effect of High Frequency Electric Currents on Biological Objects. Nature,157, 51.Google Scholar
  22. 22.
    Krueger, A. P., S. Kotaka, and P. C. Andriese. 1962. Int. J. Biometeor.,6, 33–48.CrossRefGoogle Scholar
  23. 23.
    Krueger, A. P., S. Kotaka, and P. C. Andriese. 1963. A Study of the Mechanism of Air-ion-induced Growth Stimulation inHordeum vulgaris. Int. J. Biometeor.,7, 17–25.Google Scholar
  24. 24.
    Krueger, A. P., S. Kotaka, and P. C. Andriese. 1964. Studies on Air-ion Enhanced Iron Chlorosis. I. Active and Residual Iron. Int. J. Biometeor.,8, 5–16.Google Scholar
  25. 25.
    Pratt, R. 1962. Effect of Ionized Air on Early Growth of Black Mustard Seedlings. J. Pharm. Sci.,51, 184–185.Google Scholar
  26. 26.
    Murr, L. E. 1963. Nature,200, 490.Google Scholar
  27. 27.
    Murr, L. E. 1965. Plant Growth Response in an Electrokinetic Field. Nature,207, 1177–1178.Google Scholar
  28. 28.
    Murr, L. E. 1966. Physiological Stimulation of Plants Using Delayed and Regulated Electric Field Environments. Int. J. Biometeor.,10, 147–153.Google Scholar
  29. 29.
    Murr, L. E. 1966. Plant Physiology in Simulated Geoelectric and Geomagnetic Fields. Adv. Frontiers Plant Sci.,15, 97–120.Google Scholar
  30. 30.
    Murr, L. E. 1966c. The Biophysics of Plant Growth in a Reversed Electrostatic Field; A Comparison with Conventional Electrostatic and Electrokinetic Field Growth Responses. Int. J. Biometeor.,10, 135–146.Google Scholar
  31. 31.
    Krueger, A. P., S. Kotaka, and P. C. Andriese. 1965. Effect of Abnormally Low Concentrations of Air Ions on the Growth ofHordeum vulgaris. Int. J. Biometeor.,9, 201–209.CrossRefGoogle Scholar
  32. 32.
    Anderson, I., and E. Vad. 1965. The Influence of Electric Fields on Bacterial Growth. Int. J. Biometeor.,9, 211–218.Google Scholar
  33. 33.
    Sidaway, G. H. 1966. Influence of Electrostatic Fields on Seed Germination. Nature,203, 303.Google Scholar
  34. 34.
    Sidaway, G. H., and G. F. Aspray. 1968. Influence of Electrostatic Fields on Plant Respiration. Int. J. Biometeor.,12, 321–329.CrossRefGoogle Scholar
  35. 35.
    Sharp, E. L. 1967. Atmospheric Ions and Germination of Uredospores ofPuccinia striiformis. Science,156, 1359–1360.ADSGoogle Scholar
  36. 36a.
    Sale, A. J. H., and W. A. Hamilton. 1967. Effects of High Electrical Fields on Micro-organisms: I. Killing of Bacterial and Yeasts. Biochim. and biophys. Acta,148, 781–788.Google Scholar
  37. 36b.
    Sale, A. J. H., and W. A. Hamilton. 1967. Effects of High Electrical Fields on Micro-organisms: II. Mechanism of Action of Lethal Effect. ibid., 789–800.Google Scholar
  38. 37.
    Bentrup, F. W. 1968. Die Morphogenese pflanzlichen Zellen im electrische Feld. Z. Pflanzenphysiol.,59, 309–339.Google Scholar
  39. 38.
    Kotaka, S., A. P. Krueger, and P. C. Andriese. 1968. Effect of Air Ions on Light-induced Swelling and Dark-induced Shrinking of Isolated Chloroplasts. Int. J. Biometeor.,12, 85–92.Google Scholar
  40. 39.
    Kotaka, S., and A. P. Krueger. 1967. Studies on the Air-ion Induced Growth in Higher Plants. Adv. Frontiers Plant Sci.,20, 115–208.Google Scholar
  41. 40.
    Feder, W. A., and F. Sullivan. 1969. Ozone; Depression of Frond Multiplication and Floral Production in Duckweed. Science,165, 1373–1374.ADSGoogle Scholar
  42. 41.
    Stersky, A., D. R. Heldman, and T. I. Hedrick. 1970. Effect of a Bipolar Oriented Electric Field on Microorganisms. J. Milk and Foods Tech.,33, 545–549.Google Scholar
  43. 42.
    Wheaton, F. W., W. G. Lovely, and C. W. Bockhop. 1971. Effects of Static and 60 Hz Electrical Fields on the Germination Rate of Corn and Soy Beans. Trans. ASAE, 339–42. (No Vol. #)Google Scholar
  44. 43.
    Bachman, C. H., D. G. Hademanos, and L. S. Underwood. 1971. Ozone and Air Ions Accompanying Biological Implications of Electric Fields. J. Atoms. Terr. Phys.,33, 497–505.Google Scholar
  45. 44.
    Black, J. D., F. R. Forsyth, D. S. Fensom, and R. B. Ross. 1971. Electrical Stimulation and its Effects on Growth and Ion Accumulation in Tomato Plants. Can. J. Bot.,49, 1809–1815.Google Scholar
  46. 45.
    Kotaka, S., and A. P. Krueger. 1972. Air Ion Effects on RNAase Activity in Green Barley Leaves. Int. J. Biometeor.,16, 1–11.CrossRefGoogle Scholar
  47. 46.
    Krueger, A. P., A. Kotaka, and E. J. Reed. 1973. The Effects of Air-ions on Plants. Congress International, Le Soleil au Service de L’Homme, Paris, July.Google Scholar
  48. 47.
    Higinbotham, H. 1973. Electropotentials of Cells. Ann. Rev. Plant Physiol.,24, 25–46.Google Scholar
  49. 48.
    Bachman, C. H., and M. Reichmans. 1973. Barley Leaf Tip Damage Resulting from Exposure to High Electrical Fields. Int. J. Biometeor.,17, 243–251.Google Scholar
  50. 49.
    Krueger, A. P. and E. J. Reed. 1976. Biological Impact of Small Air Ions. Science,193, 1209–1213.ADSGoogle Scholar
  51. 50.
    Winton, R., P. Richardson, H. A. Pohl, and W. R. Kays. Unpublished.Google Scholar

Copyright information

© Physical Biological Sciences Ltd 1978

Authors and Affiliations

  • Herbert A. Pohl
    • 1
  1. 1.Department of PhysicsOklahoma State UniversityStillwater

Personalised recommendations