, Volume 53, Issue 3–4, pp 233–242 | Cite as

Optimal initial approximations for the Newton-Raphson division algorithm

  • M. J. Schulte
  • J. Omar
  • E. E. SwartzlanderJr.


Newton-Raphson iteration provides a high-speed method for performing division. The Newton-Raphson division algorithm begins with an initial approximation to the reciprocal of the divisor. This value is iteratively refined until a specified accuracy is achieved. In this paper, we develop methods for selecting constant and linear approximations which minimize the maximum absolute error of the final result. These approximations are compared with previous methods which minimize the maximum relative error in the final result or the maximum absolute error in the initial value.

AMS Subject Classification


Key words

Division Newton-Raphson initial approximation relative error absolute error error analysis computer arithmetic 

Optimale Anfangsnäherungen für den Newton-Raphson Divisionsalgorithmus


Die Newton-Raphson Iteration, die eine schnelle Division gestattet, beginnt mit einer Anfangsnäherung für den Kehrwert des Divisors. Dieser Wert wird iterativ verbessert, bis die vorgegebene Genauigkeit erreicht ist. In der Arbeit wird die Auswahl von konstanten und linearen Näherungen beschrieben, die den maximalen Absolutfehler des Endergebnisses minimieren. Diese Näherungen werden mit vorliegenden Verfahren verglichen, bei denen der maximale Relativfehler im Endergebnis oder der maximale Absolutfehler der Anfangsnäherung minimiert wird.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Flynn, M. J.: On division by functional iterations. IEEE Trans. Comput. C-19, 702–706 (1970).zbMATHGoogle Scholar
  2. [2]
    Fowlder, D. L., Smith, J. E.: An accurate, high speed implementation of division by reciprocal approximation. Proceedings of the Ninth Symposium on Computer Arithmetic, pp. 60–67 (1989).Google Scholar
  3. [3]
    Alverson, R.: Integer division using reciprocals. Proceedings of the Tenth Symposium on Computer Arithmetic, 186–190 (1991).Google Scholar
  4. [4]
    Intel, i860 64-Bit microprocessor programmer's reference manual (1989).Google Scholar
  5. [5]
    Monotoye, R., Hokenek, E., Runyon, S.: Design of the IBM RISC System/6000 floating point execution unit,” IBM J. Res. Dev.34, 59–70 (1990).Google Scholar
  6. [6]
    Matula, D. W.: A highly parallel arithmetic unit for floating point multiply, divide with remainder and square root with remainder, SCAN-89, Basel October 1989.Google Scholar
  7. [7]
    Anderson, S. F., Earle, J. G., Goldschmidt, R. E., Powers, D. M.: The IBM System 360 model 91: floating point execution unit. IBM J. Res. Dev.11, 34–53 (1967).Google Scholar
  8. [8]
    Ferrari, D.: A division method using a parallel multiplier. IEEE Trans. Electr. Comput.EC-16, 224–226 (1967).zbMATHGoogle Scholar
  9. [9]
    Das Sarma, D., Matula, D. W.: Measuring the accuracy of ROM reciprocal tables. Proceedings of the Eleventh Symposium on Computer Arithmetic, pp. 95–102 (1993).Google Scholar
  10. [10]
    Swartzlander, Jr. E. E.: Overview of computer arithmetic. Comput. Arith.2, IEEE Computer Press Society, pp. 1–14 (1990).Google Scholar
  11. [11]
    Parker, A., Hamblen, J. O.: Optimal value for the Newton-Raphson division algorithm. Inf. Proc. Lett.42, 141–144 (1992).CrossRefGoogle Scholar
  12. [12]
    Anderson, N.: Minimum relative error approximations for 1/t. Numer. Math.54, 117–125 (1988).zbMATHMathSciNetGoogle Scholar
  13. [13]
    Montuschi, P., Messalama, M.: Optimal absolute error starting value for Newton-Raphson calculation of square root. Computing46, 67–86 (1991).CrossRefMathSciNetGoogle Scholar
  14. [14]
    Moursund, D. G.: Optimal starting values for Newton-Raphson calculation of\(\sqrt x \). Comm. ACM10, 430–432 (1967).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. J. Schulte
    • 1
  • J. Omar
    • 1
  • E. E. SwartzlanderJr.
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations