Advertisement

Mathematical Notes

, Volume 59, Issue 6, pp 625–636 | Cite as

A few remarks on ζ(3)

  • Yu. V. Nesterenko
Article

Abstract

A new proof of the irrationality of the number ζ(3) is proposed. A new decomposition of this number into a continued fraction is found. Recurrence relations are proved for some sequences of Meyer'sG-functions that define a sequence of rational approximations to ζ(3) at the point 1.

Keywords

Recurrence Relation Rational Approximation Continue Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Apery, “Irrationalité de ζ(2) et ζ(3),”Astérisque,61, 11–13 (1979).zbMATHGoogle Scholar
  2. 2.
    H. Cohen, “Démonstration de l'irrationalité de ζ(3) (d'après R. Apery),” in:Semin. de théorie des nombres, Grenoble (1978).Google Scholar
  3. 3.
    A. van der Poorten, “A proof that Euler missed—Apery's proof of the irrationality of ζ(3),”Math. Intell.,1, 195–203 (1979).zbMATHGoogle Scholar
  4. 4.
    E. Reyssat, “Irrationalité de ζ(3), selon Apery,” in:20 année. Seminaire Delange-Pisot-Poitou, (1978/79), p. 6.Google Scholar
  5. 5.
    F. Beukers, “A note on the irrationality of ζ(2) and ζ(3),”Bull. London Math. Soc.,11, 268–272 (1979).zbMATHMathSciNetGoogle Scholar
  6. 6.
    M. Hata, “On the linear independence of the values of polylogarithmic functions,”J. math. pures et appl.,69, 133–173 (1990).zbMATHMathSciNetGoogle Scholar
  7. 7.
    L. A. Gutnik, “On the irrationality of certain quantities involving ζ(3),”Uspekhi Mat. Nauk [Russian Math. Surveys],34, No. 3, 190 (1979). Translation in:Acta Arith.,42 No. 3, 255–264 (1983).zbMATHMathSciNetGoogle Scholar
  8. 8.
    Y. L. Luke,Mathematical Functions and Their Approximations, Academic Press, New York-San Francisko-London (1975).Google Scholar
  9. 9.
    F. Beukers, “Pade approximations in number theory,” in:Lecture Notes in Math, Vol. 888, Springer-Verlag, New York-Berlin (1981), pp. 90–99.Google Scholar
  10. 10.
    V. N. Sorokin, “Hermite-Pade approximations for Nikishin systems and the irrationality of ζ(3),”Uspekhi Mat. Nauk [Russian Math. Surveys],49, No. 2, 167–168 (1994).zbMATHMathSciNetGoogle Scholar
  11. 11.
    W. B. Jones and W. J. Thron,Continued Fractions. Analytic Theory and Applications, Encyclopedia of Mathematics and Its Applications, Vol. 11, Addison-Wesley, Reading, Mass. (1980).Google Scholar
  12. 12.
    A. O. Gelfond,Calculus of Finite Differences [in Russian], Nauka, Moscow (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Yu. V. Nesterenko
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations