Mathematical Notes

, Volume 58, Issue 6, pp 1340–1342 | Cite as

Estimate of approximate characteristics for classes of functions with bounded mixed derivative

  • B. S. Kashin
  • V. N. Temlyakov
Brief Communications

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Kashin and V. N. Temlyakov,Mat. Zametki [Math. Notes],56, No. 5, 57–86 (1994).MathSciNetGoogle Scholar
  2. 2.
    É. S. Belinskii, “Asymptotic characteristics of function classes with restrictions on the mixed derivative (mixed difference),” in:Studies in the Theory of Functions of Several Real Variables [in Russian], Yaroslavl State University, Yaroslavl (1990), pp. 22–37.Google Scholar
  3. 3.
    V. N. Temlyakov,Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],301, No. 2, 288–291 (1988).Google Scholar
  4. 4.
    V. N. Temlyakov, “Estimates of asymptotic characteristics for classes of functions with bounded mixed derivative or difference,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],189 138–168 (1989).MathSciNetGoogle Scholar
  5. 5.
    A. Pietsch,Operator Ideals, Deutsch. Verlag Wissensch., Berlin (1978); English transl.: North-Holland, Amsterdam (1980).Google Scholar
  6. 6.
    Din' Zung,Approximation of Smooth Functions of Several Variables by Means of Harmonic Analysis, D. Sc. Thesis, Moscow State University, Moscow (1985).Google Scholar
  7. 7.
    V. N. Temlyakov,Approximation of Periodic Functions, Nova Science Publishers (1993).Google Scholar
  8. 8.
    V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],178, 1–121, (1986).MATHMathSciNetGoogle Scholar
  9. 9.
    G. G. Lorentz,Bull. Amer. Math. Soc.,72, 903–937 (1966).MATHMathSciNetGoogle Scholar
  10. 10.
    G. Pisier,The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • B. S. Kashin
    • 1
  • V. N. Temlyakov
    • 1
  1. 1.Steklov Mathematics InstituteRussian Academy of SciencesUSSR

Personalised recommendations