Advertisement

Mathematical Notes

, Volume 58, Issue 6, pp 1302–1305 | Cite as

A test for compactness of a foliation

  • I. A. Mel'nikova
Article

Abstract

We investigate foliations on smooth manifolds that are determined by a closed 1-form with Morse singularities. We introduce the notion of the degree of compactness and prove a test for compactness.

Keywords

Manifold Smooth Manifold Morse Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Novikov, “The Hamiltonian formalism and a multivalued version of Morse theory,”Uspekhi Mat. Nauk [Russian Math. Surveys],37, No. 5, 3–49 (1982).MATHMathSciNetGoogle Scholar
  2. 2.
    S. P. Novikov, “Critical points and level surfaces of multivalued functions,” in:Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],166, 201–209 (1984).MATHMathSciNetGoogle Scholar
  3. 3.
    A. V. Zorich, “Quasiperiodic structure of level surfaces of a 1-form close to a rational one; Novikov's problem,”Izv. Akad. Nauk SSSR, Ser. Mat. [Math. USSR-Izv.],51, No. 6, 1322–1344 (1987).MATHGoogle Scholar
  4. 4.
    T. K. T. Le, “On the structure of level surfaces of a Morse form,”Mat. Zametki. [Math. Notes],44, No. 1, 124–133 (1988).MathSciNetGoogle Scholar
  5. 5.
    L. A. Alaniya, “On the topological structure of the level surfaces of Morse 1-forms,”Uspekhi Mat. Nauk [Russian Math. Surveys],46, No. 3, 179–180 (1991).MATHMathSciNetGoogle Scholar
  6. 6.
    I. A. Mel'nikova, “A noncompactness test for a foliation onM g 2,”Mat. Zametki. [Math. Notes],53, No. 3, 158–160 (1993).MATHMathSciNetGoogle Scholar
  7. 7.
    Henc Damir, “Ergodicity of foliations with singularities,”J. Funct. Anal.,75, No. 2 (1987).Google Scholar
  8. 8.
    A. Dold,Lectures on Algebraic Topology, 2nd ed., Berlin, (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • I. A. Mel'nikova
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations