Mathematical Notes

, Volume 57, Issue 3, pp 319–322 | Cite as

Pontryagin duality in the theory of topological vector spaces

  • S. S. Akbarov
Brief Communications


Vector Space Topological Vector Space Pontryagin Duality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Smith, Ann. Math.,56, No. 2, 248–253 (1952).zbMATHGoogle Scholar
  2. 2.
    B. S. Brudovskii, Lit. Mat. Sb.,7, No. 1, 17–21 (1967).MathSciNetGoogle Scholar
  3. 3.
    W. C. Waterhouse, Pac. J. Math.,26, No. 1, 193–196 (1968).zbMATHMathSciNetGoogle Scholar
  4. 4.
    K. Brauner, Duke Math. J.,40, No. 4, 845–855 (1973).zbMATHMathSciNetGoogle Scholar
  5. 5.
    H. Sheffer, Topological Vector Spaces [Russian translation], Mir, Moscow (1971).Google Scholar
  6. 6.
    I. Booker and A. Delyan, Introduction to Category Theory and Theory of Functors [Russian translation], Mir, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. S. Akbarov
    • 1
  1. 1.Moscow State Institute of Electronics and MathematicsUSSR

Personalised recommendations