Annals of Surgical Oncology

, Volume 5, Issue 8, pp 681–688 | Cite as

Adenovirus-mediated wild-typep53 tumor suppressor gene therapy induces apoptosis and suppresses growth of human pancreatic cancer

  • Michael Bouvet
  • Richard J. Bold
  • Julia Lee
  • Douglas B. Evans
  • James L. Abbruzzese
  • Paul J. Chiao
  • David J. McConkey
  • Joya Chandra
  • Sunil Chada
  • Bingliang Fang
  • Jack A. Roth
Original Articles


Background: Thep53 tumor suppressor gene is mutated in up to 70% of pancreatic adenocarcinomas. We determined the effect of reintroduction of the wild-typep53 gene on proliferation and apoptosis in human pancreatic cancer cells using an adenoviral vector containing the wild-typep53 tumor suppressor gene.

Methods: Transduction efficiencies of six p53-mutant pancreatic cancer cell lines (AsPC-1, BxPC-3, Capan-1, CFPAC-1, MIA PaCa-2, and PANC-1) were determined using the reporter gene construct Ad5/CMV/β-gal. Cell proliferation was monitored using a3H-thymidine incorporation assay, Western blot analysis forp53 expression was performed, and DNA laddering and fluorescence-activated cell sorter analysis were used to assess apoptosis.p53 gene therapy was tested in vivo in a subcutaneous tumor model.

Results: The cell lines varied in transduction efficiency. The MIA PaCa-2 cells had the highest transduction efficiency, with 65% of pancreatic tumor cells staining positive for beta-galactosidase (β-gal) at a multiplicity of infection (MOI) of 50. At the same MOI, only 15% of the CFPAC-1 cells expressed the β-gal gene. Adenovirus-mediatedp53 gene transfer suppressed growth of all human pancreatic cancer cell lines in a dose-dependent manner. Western blot analysis confirmed the presence of the p53 protein product at 48 hours after infection. DNA ladders demonstrated increased chromatin degradation, and fluorescence-activated cell sorter analysis demonstrated a four-fold increase in apoptotic cells at 48 and 72 hours following infection with Ad5/CMV/p53 in the MIA PaCa-2 and PANC-1 cells. Suppression of tumor growth mediated by induction of apoptosis was observed in vivo in an established nude mouse subcutaneous tumor model following intratumoral injections of Ad5/CMV/p53.

Conclusions: Introduction of the wild-typep53 gene using an adenoviral vector in pancreatic cancer withp53 mutations induces apoptosis and inhibits cell growth. These data provide preliminary support for adenoviral mediatedp53 tumor suppressor gene therapy of human pancreatic cancer.

Key Words

p53 Pancreatic cancer Apoptosis Gene therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics.CA Cancer J Clin 1998;48:6–29.PubMedGoogle Scholar
  2. 2.
    Evans DB, Abbruzzese JL, Rich TA. Cancer of the pancreas. In: DeVita VT, Hellman S, Rosenberg SA, eds.Cancer: Principles and Practice of Oncology. 5th ed. Philadelphia: Lippincott-Raven, 1997:1054–81.Google Scholar
  3. 3.
    Vogelstein B. Cancer: a deadly inheritance.Nature 1990;348:681–2.CrossRefPubMedGoogle Scholar
  4. 4.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers.Science 1989;253:49–53.Google Scholar
  5. 5.
    Mukhopadhyay T, Maxwell SA, Roth JA.p53 suppressor gene. Austin, TX: RG Landes, 1995.Google Scholar
  6. 6.
    Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions.Cancer Res 1994;54:3025–33.PubMedGoogle Scholar
  7. 7.
    Ruggeri B, Zhang SY, Caamano J, Dirado M, Flynn SD, Klein-Szanto AJ. Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor suppressor genes.Oncogene 1992;7:1503–11.PubMedGoogle Scholar
  8. 8.
    Casey G, Yamanaka Y, Friess H, et al. p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis.Cancer Lett 1993;69:151–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Barton CM, Staddon SL, Hughes CM, et al. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.Br J Cancer 1991;64:1076–82.PubMedGoogle Scholar
  10. 10.
    Pellegata NS, Sessa F, Renault B, et al. K-ras and p53 mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions.Cancer Res 1994;54:1556–60.PubMedGoogle Scholar
  11. 11.
    Nakamori S, Yashima K, Murakami Y, et al. Association of p53 gene mutations with short survival in pancreatic adenocarcinoma.Jpn J Cancer Res 1995;86:174–81.PubMedGoogle Scholar
  12. 12.
    Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus.Cancer Gene Ther 1994;1:5–13.PubMedGoogle Scholar
  13. 13.
    Liu TJ, El-Naggar AK, McDonnell TJ, et al. Apoptosis induction mediated by wild-typep53 adenoviral gene transfer in squamous cell carcinoma of the head and neck.Cancer Res 1995;55:3117–22.PubMedGoogle Scholar
  14. 14.
    Spitz FR, Nguyen D, Skibber JM, Cusack J, Roth JA, Cristiano RJ. In vivo adenovirus-mediated p53 tumor suppressor gene therapy for colorectal cancer.Anticancer Res 1996;16:3415–22.PubMedGoogle Scholar
  15. 15.
    Zhang WW, Alemany R, Wang J, Koch PE, Ordonez NG, Roth JA. Safety evaluation of Ad5CMV-p53 in vitro andin vivo.Hum Gene Ther 1995;6:155–64.PubMedGoogle Scholar
  16. 16.
    Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M. Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.Int J Cancer 1994;58:185–91.PubMedGoogle Scholar
  17. 17.
    Graham FL, Prevec L. Manipulation of adenovirus vectors. In: Murray E, ed.Methods in Molecular Biology: Gene Transfer and Expression Protocols. Vol. 7. Clifton, NJ: The Human Press, 1991:205–25.Google Scholar
  18. 18.
    Boviatsis EJ, Chase M, Wei MX, et al. Gene transfer into experimental brain tumors mediated by adenovirus,Herpes simplex virus, and retrovirus.Hum Gene Ther 1994;5:183–91.PubMedGoogle Scholar
  19. 19.
    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry.J Immunol Methods 1991;139:271–9.CrossRefPubMedGoogle Scholar
  20. 20.
    McConkey DJ, Hartzell P, Jondal M, Orrenius S. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C.J Biol Chem 1989;264:13399–402.PubMedGoogle Scholar
  21. 21.
    Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell deathin situ via specific labeling of nuclear DNA fragmentation.J Cell Biol 1992;119:493–501.CrossRefPubMedGoogle Scholar
  22. 22.
    Trede M, Schwall G, Saeger HD. Survival after pancreatoduodenectomy. 118 consecutive resections without an operative mortality.Ann Surg 1990;211:447–58.PubMedGoogle Scholar
  23. 23.
    Staley CA, Lee JE, Cleary KA, Abbruzzese JL, Rich TA, Evans DB. Preoperative chemoradiation, pancreatoduodenectomy, and intraoperative radiation therapy for adenocarcinoma of the pancreatic head: patient survival and patterns of treatment failure.Am J Surg 1996;171:118–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Spitz FR, Abbruzzese JL, Lee JE, et al. Properative and postoperative chemoradiation strategies in patients treated with pancreaticoduodenectomy for adenocarcinoma of the pancreas.J Clin Oncol 1997;15:928–37.PubMedGoogle Scholar
  25. 25.
    Kaiser MH, Ellenberg SS. Pancreatic cancer: adjuvant combined radiation and chemotherapy following curative resection.Arch Surg 1985;120:899–903.Google Scholar
  26. 26.
    Howe JR, Conlon KC. The molecular genetics of pancreatic cancer.Surg Oncol 1997;6:1–18.CrossRefPubMedGoogle Scholar
  27. 27.
    Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA. Induction of chemosensitivity in human lung cancer cellsin vivo by adenoviral-mediated transfer of the wild-type p53 gene.Cancer Res 1994;54:2287–91.PubMedGoogle Scholar
  28. 28.
    Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA. Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation.Clin Cancer Res 1996;2:1665–71.PubMedGoogle Scholar
  29. 29.
    Horowitz JA, Maneval DC, Rybak ME. Intra-arterial p53 gene therapy of liver malignancies: preclinical studies and initial clinical observations.Cancer Gene Ther 1997;4:S12.Google Scholar
  30. 30.
    Yang L, Hwang R, Pandit L, Gordon EM, Anderson WF, Parekh D. Gene therapy of metastatic pancreas cancer with intraperitoneal injections of concentrated retroviral herpes simplex thymidine kinase vector supernatant and ganciclovir.Ann Surg 1996;224:405–17.CrossRefPubMedGoogle Scholar

Copyright information

© The Society of Surgical Oncology, Inc. 1998

Authors and Affiliations

  • Michael Bouvet
    • 1
  • Richard J. Bold
    • 1
  • Julia Lee
    • 5
  • Douglas B. Evans
    • 1
  • James L. Abbruzzese
    • 2
  • Paul J. Chiao
    • 1
  • David J. McConkey
    • 3
  • Joya Chandra
    • 3
  • Sunil Chada
    • 5
  • Bingliang Fang
    • 4
  • Jack A. Roth
    • 4
  1. 1.From the Department of Surgical OncologyThe University of Texas M. D. Anderson Cancer CenterUSA
  2. 2.the Department of Medical OncologyThe University of Texas M. D. Anderson Cancer CenterUSA
  3. 3.the Department of Cell BiologyThe University of Texas M. D. Anderson Cancer CenterUSA
  4. 4.the Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular SurgeryThe University of Texas M. D. Anderson Cancer CenterUSA
  5. 5.Introgen TherapeuticsHouston

Personalised recommendations