Advertisement

Psychometrika

, Volume 49, Issue 4, pp 449–473 | Cite as

Statistical applications of linear assignment

  • Lawrence J. Hubert
Article

Abstract

A comprehensive statistical framework is presented which encompasses a wide range of existing nonparametric methods. The basic strategy, referred to as linear assignment (LA), depends on a simple index of correspondence defined between two object sets that have been matched in somea priori manner. In this broad sense, LA can be interpreted as a general correlational technique. A variety of extensions are discussed along with the attendant problems of significance testing and the construction of normalized descriptive indices.

Key words

linear assignment permutation tests nonparametric statistics correlation spatial statistics concordance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A., Wackerly, D., & Boyett, J. (1979). Exact conditional tests for cross-classifications: Approximation of obtained significance levels.Psychometrika, 44, 75–83.CrossRefGoogle Scholar
  2. Bachi, R. (1962). Standard distance measures and related methods for spatial analysis.Papers of The Regional Science Association, 10, 83–132.Google Scholar
  3. Bradley, J. V. (1968).Distribution-free statistical tests. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  4. Buffington, V., Martin, D. C., & Becker, J. (1981). VER similarity between alcoholic probands and their first-degree relatives.Psychophysiology, 18, 529–533.PubMedGoogle Scholar
  5. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix.Psychological Bulletin, 56, 81–105.PubMedGoogle Scholar
  6. Cliff, A. D., & Ord, J. K. (1981).Spatial processes: Models and applications. London: Pion.Google Scholar
  7. Cohen, J. (1968). Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit.Psychological Bulletin, 70, 213–220.Google Scholar
  8. Cohen, J. (1972). Weighted chi-square: An extension of the kappa method.Educational and Psychological Measurement, 32, 61–74.Google Scholar
  9. Daniels, H. E. (1944). The relation between measures of correlation in the universe of sample permutations.Biometrika, 33, 129–135.Google Scholar
  10. David, F. N., & Barton, D. E. (1962).Combinatorial chance. New York: Hafner.Google Scholar
  11. Diaconis, P., & Graham, R. L. (1977). Spearman's footrule as a measure of disarray.Journal of the Royal Statistical Society, B, 39, 262–268.Google Scholar
  12. Dietz, E. J., (1983). Permutation tests for association between two distance matrices.Systematic Zoology, 32, 21–26.Google Scholar
  13. Dwyer, P. S. (1964). The mean and variance of the distribution of group assembly sums.Psychometrika, 29, 397–408.Google Scholar
  14. Edgington, E. S. (1969).Statistical inference: The distribution-free approach. New York: McGraw-Hill.Google Scholar
  15. Epp, R. J., Tukey, J. W., & Watson, G. S. (1971). Testing unit vectors for correlation.Journal of Geophysical Research, 76, 8480–8483.Google Scholar
  16. Fraser, D. A. S. (1956). A vector form of the Wald-Wolfowitz-Hoeffding theorem.Annals of Mathematical Statistics, 27, 540–543.Google Scholar
  17. Hájek, J., & Šidák, Z. (1967).Theory of rank tests. New York: Academic Press.Google Scholar
  18. Harter, H. L. (1969). A new table of percentage points of the Pearson Type III distribution.Technometrics, 11, 177–187.Google Scholar
  19. Hildebrand, D., Laing, M., & Rosenthal, A. (1977).Prediction analysis of cross-classifications. New York: Wiley.Google Scholar
  20. Hoeffding, W. (1951). A combinatorial central limit theorem.Annals of Mathematical Statistics, 22, 558–566.Google Scholar
  21. Hubert, L. J. (1977). Kappa revisited.Psychological Bulletin, 84, 289–297.Google Scholar
  22. Hubert, L. J. (1978). A general formula for the variance of Cohen's weighted kappa.Psychological Bulletin, 85, 183–184.Google Scholar
  23. Hubert, L. J. (1979). The comparison of sequences.Psychological Bulletin, 86, 1098–1106.Google Scholar
  24. Hubert, L. J. (1983). Inference procedures for the evaluation and comparison of proximity matrices. In J. Felsenstein (Ed.),Numerical Taxonomy (pp. 209–228). New York: Springer-Verlag.Google Scholar
  25. Hubert, L. J., & Golledge, R. G. (1982a). Comparing rectangular data matrices.Environment and Planning, A, 14, 1087–1095.Google Scholar
  26. Hubert, L. J., & Golledge, R. G. (1982b). Measuring association between spatially defined variables: Tjøstheim's index and some extensions.Geographical Analysis, 14, 273–278.Google Scholar
  27. Hubert, L. J., & Golledge, R. G. (1983). Rater agreement for complex assessments.British Journal of Mathematical and Statistical Psychology, 36, 207–216.Google Scholar
  28. Hubert, L. J., Golledge, R. G., Costanzo, C. M., & Richardson, G. D. (1981). Assessing homogeneity in cross-classified proximity data.Geographical Analysis, 13, 38–50.Google Scholar
  29. Hubert, L. J., Golledge, R. G., Kenney, T., & Costanzo, C. M. (1981). Aggregation in data tables: Implications for evaluating criminal justice statistics.Environment and Planning, A, 13, 185–199.Google Scholar
  30. Kendall, M. G. (1970).Rank correlation methods (4th edition). London: Griffin.Google Scholar
  31. Kendall, M. G., & Stuart, A. (1979).The advanced theory of statistics, Volume 2 (4th edition). New York: Macmillan.Google Scholar
  32. Klauber, M. R. (1971). Two sample randomization tests for space-time clustering.Biometrics, 27, 129–142.Google Scholar
  33. Lehmann, E. L. (1975).Nonparametrics: Statistical methods based on ranks. New York: Holden-Day.Google Scholar
  34. Lerman, I. C. (1980). Combinatorial analysis in the statistical treatment of behavioral data.Quality and Quantity, 14, 431–469.CrossRefGoogle Scholar
  35. Martin, D. C., Buffington, V., & Becker, J. (1981). Randomization test of paired data: Application to evoked responses.Psychophysiology, 18, 524–528.PubMedGoogle Scholar
  36. Mielke, P. W. (1979). On asymptotic non-normality of null distributions of MRPP statistics.Communications in Statistics—Theory and Methods, A8, 1541–1550 (errata:A10, 1981, p. 1795;A11, 1982, p. 847).Google Scholar
  37. Mielke, P. W., & Berry, K. J. (1982). An extended class of permutation techniques for matched pairs.Communications in Statistics—Theory and Methods, A11, 1197–1207.Google Scholar
  38. Mielke, P. W., Berry, K. J., & Brier, G. W. (1981). Application of multi-response permutation procedures for examining seasonal changes in monthly mean sea-level pressure patterns.Monthly Weather Review, 109, 120–126.Google Scholar
  39. Mielke, P. W., & Iyer, H. K. (1982). Permutation techniques for analyzing multi-response data from randomized block experiments.Communications in Statistics—Theory and Methods, A11, 1427–1437.Google Scholar
  40. Mosteller, F., & Bush, R. R. (1954). Selected quantitative techniques. In G. Lindzey (Ed.),Handbook of Social Psychology (Volume 1). Cambridge: Addison-Wesley.Google Scholar
  41. Motoo, M. (1957). On the Hoeffding's combinatorial central limit theorem.Annals of the Institute of Statistical Mathematics, 8, 145–154.Google Scholar
  42. Page, E. B. (1963). Ordered hypothesis for multiple treatments: A significance test for linear ranks.Journal of the American Statistical Association, 58, 216–230.Google Scholar
  43. Pirie, W. R., & Hollander, M. (1972). A distribution-free normal scores test for ordered alternatives in the randomized block design.Journal of the American Statistical Association, 67, 855–857.Google Scholar
  44. Puri, M. L., & Sen, P. K. (1971).Nonparametric methods in multivariate analysis. New York: Wiley.Google Scholar
  45. Schucany, W. R., & Frawley, W. H. (1973). A rank test for two-group concordance.Psychometrika, 38, 249–258.CrossRefGoogle Scholar
  46. Sneath, P. H. A., & Sokal, R. R. (1973).Numerical taxonomy. San Francisco: Freeman.Google Scholar
  47. Sokal, R. R. (1979). Testing statistical significance of geographical variation patterns.Systematic Zoology, 28, 227–232.Google Scholar
  48. Thorndike, R. L. (1950). The problem of classification of personnel.Psychometrika, 15, 215–235.CrossRefPubMedGoogle Scholar
  49. Tjøstheim, D. (1978). A measure of association for spatial variables.Biometrika, 65, 109–114.Google Scholar
  50. Tsutakawa, R. K., & Yang, S. L. (1974). Permutation tests applied to antibiotic drug resistance.Journal of the American Statistical Association, 69, 87–92.Google Scholar
  51. Wald, A., & Wolfowitz, J. (1944). Statistical tests based on permutations of the observations.Annals of Mathematical Statistics, 15, 358–372.Google Scholar
  52. Ward, J. H. (1958). The counseling assignment problem.Psychometrika, 23, 55–65.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 1984

Authors and Affiliations

  • Lawrence J. Hubert
    • 1
  1. 1.Graduate School of EducationThe University of CaliforniaSanta Barbara

Personalised recommendations