International Journal of Theoretical Physics

, Volume 35, Issue 8, pp 1637–1678 | Cite as

Relational quantum mechanics

  • Carlo Rovelli


I suggest that the common unease with taking quantum mechanics as a fundamental description of nature (the “measurement problem”) could derive from the use of an incorrect notion, as the unease with the Lorentz transformations before Einstein derived from the notion of observer-independent time. I suggest that this incorrect notion that generates the unease with quantum mechanics is the notion of “observer-independent state” of a system, or “observer-independent values of physical quantities.” I reformulate the problem of the “interpretation of quantum mechanics” as the problem of deriving the formalism from a set of simple physical postulates. I consider a reformulation of quantum mechanics in terms of information theory. All systems are assumed to be equivalent, there is no observer-observed distinction, and the theory describes only the information that systems have about each other; nevertheless, the theory is complete.


Field Theory Elementary Particle Quantum Field Theory Quantum Mechanic Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, D. (1992).Quantum Mechanics and Experience, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  2. Albert, D., and Loewer, B. (1988).Synthese,77, 195–213.CrossRefMathSciNetGoogle Scholar
  3. Albert, D., and Loewer, B. (1989).Nous,23, 169–186.MathSciNetGoogle Scholar
  4. Ashtekar, A. (1993). Personal communication.Google Scholar
  5. Bacciagaluppi, G. (1995). A kochen-Specker theorem in the modal interpretation of quantum theory,International Journal of Theoretical Physics,34, 1205.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Bacciagaluppi, G., and Hemmo, M. (n.d.). Modal interpretations of imperfect measurement,Foundations of Physics, to appear.Google Scholar
  7. Belifante, F. J. (1973).A Survey of Hidden Variable Theories, Pergamon Press, Oxford.Google Scholar
  8. Bell, J. (1987). InSchrödinger: Centenary of a Polymath, Cambridge University Press, Cambridge.Google Scholar
  9. Beltrametti, E. G., and Cassinelli, G. (1981).The Logic of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  10. Bohm, D. (1951).Quantum Theory, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  11. Bohr, N. (1935).Nature,12, 65.Google Scholar
  12. Bohr, N. (1949). InAlbert Einstein: Philosopher-Scientist, Open Court, La Salle, Illinois, p. 199.Google Scholar
  13. Born, M. (1926).Zeitschrift für Physik,38, 803.CrossRefGoogle Scholar
  14. Bragagnolo, W., Cesari, P., and Facci, G. (1993).Teoria e metodo dell'apprendimento motorio, Societa' Stampa Sportiva, Bologna.Google Scholar
  15. Breuer, (1994). The impossibility of accurate state self-measurement,Philosophy of Science.Google Scholar
  16. Butterfield, J. (1995). Words, Minds and Quanta, inSymposium on Quantum Theory and the Mind, Liverpool.Google Scholar
  17. Crane, L. (1995). Clock and category: Is quantum gravity algebraic?Journal of Mathematical Physics.Google Scholar
  18. D'Espagnat, B. (1971).Conceptual, Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  19. DeWitt, B. S. (1970).Physics Today,23, 30.Google Scholar
  20. DeWitt, B. S., and Graham, N. (1973).The Many World Interpretation of Quantum Mechanics, Princeton University Press, Princeton, New Jersey.Google Scholar
  21. Dirac, P. M. A. (1930).The Principles of Quantum Mechanics, Clarendon Press, Oxford.Google Scholar
  22. Donald, M. (1990).Proceedings of the Royal Society of London A,427, 43.ADSzbMATHMathSciNetGoogle Scholar
  23. Earman, J. (1986).A Primer on Determinism, Reidel, Dordrecht.Google Scholar
  24. Einstein, A., Podolsky, B., and Rosen, N. (1935).Physical Review,47, 777.CrossRefADSGoogle Scholar
  25. Everett, H. (1957).Review of Modern Physics,29, 454.ADSMathSciNetGoogle Scholar
  26. Finkelstein, D. (1969). InBoston Studies in the Philosophy of Sciences, Vol. 5, R. S. Cohen and M. W. Wartofski, eds., Reidel, Dordrecht.Google Scholar
  27. Finkelstein, D. (1988). InThe Universal Turing Machine, Vol. 5, R. Herken, ed., Oxford University Press, Oxford.Google Scholar
  28. Fleming, N. G. (1992).Journal of Speculative Philosophy,VI(4), 256.Google Scholar
  29. Gadamer, H. G. (1989).Truth and Method, Crossroad, New York.Google Scholar
  30. Gell-Mann, M., and Hartle, J. (1990). InComplexity, Entropy, and the Physics of Information, W. Zurek, ed., Addison-Wesley, Reading, Massachusetts.Google Scholar
  31. Ghirardi, G. C., Rimini, A., and Weber, T. (1986).Physical Review D,34, 470.CrossRefADSMathSciNetGoogle Scholar
  32. Greenberger, Horne, and Zeilinger. (1993).Physics Today.Google Scholar
  33. Griffiths, R. B. (1984).Journal of Statistical Physics,36, 219.CrossRefzbMATHMathSciNetGoogle Scholar
  34. Griffiths, R. B. (1993). In Seminar on Foundations of Quantum Mechanics, Carnegie-Mellon University, Pittsburgh (October 1993).Google Scholar
  35. Halliwell. (1994). InStochastic Evolution of Quantum States in Open Systems and Measurement Process, L. Diosi, ed., Budapest.Google Scholar
  36. Heisenberg, W. (1927).Zeitschrift für Physik,43, 172.CrossRefzbMATHGoogle Scholar
  37. Heisenberg, W. (1936).Funf Wiener Vortage, Deuticke, Leipzig.Google Scholar
  38. Hughes, R. I. G. (1989).The Structure and Interpretation of Quantum Mechanics, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  39. Jauch, J. (1968).Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  40. Joos, E., and Zeh, H. D. (1985).Zeitschrift für Physik B,59, 223.Google Scholar
  41. Kant, I. (1787).Critique of Pure Reason [English translation, Modern Library, New York (1958)].Google Scholar
  42. Kent, A., and Dowker, F. (1994). On the consistent histories approach to quantum mechanics, preprint [pampt/94–48].Google Scholar
  43. Landau, L. D., and Lifshitz, E. M. (1977).Quantum Mechanics, Pergamon Press, Oxford, Introduction.Google Scholar
  44. Lockwood, M. (1989).Mind Brain and the Quantum, Blackwell, Oxford.Google Scholar
  45. Mackey, G. W. (1963).Mathematical Foundations of Quantum Mechanics, Benjamin, New York.Google Scholar
  46. Maczinski, H. (1967).Bulletin de l'Academic Polonaise des Sciences,15, 583.Google Scholar
  47. Maturana, H., and Varela, F. (1980).Autopoiesis and Cognition. The Realization of the Living, Reidel, Dordrecht.Google Scholar
  48. Messiah, A. (1958).Quantum Mechanics, Wiley, New York.Google Scholar
  49. Newman, E. T. (1993). Talk at the inaugural ceremony of the Center for Gravitational Physics, Penn State University, August 1993.Google Scholar
  50. Omnès, R. (1988).Journal of Statistical Physics,57, 357.Google Scholar
  51. Penrose, R. (1989).The Emperor's New Mind, Oxford University Press, Oxford.Google Scholar
  52. Peres, A., and Zurek, W. H. (1982).American Journal of Physics,50, 807.CrossRefADSGoogle Scholar
  53. Piron, C. (1972).Foundations of Physics,2, 287.CrossRefMathSciNetGoogle Scholar
  54. Primas, H. (1990). InSixty-Two Years of Uncertainty, A. I. Miller,ed., Plenum Press, New York.Google Scholar
  55. Roessler, O. E. (1987). InReal Brains—Artificial Minds, J. L. Casti and A. Karlqvist, eds., North-Holland, Amsterdam.Google Scholar
  56. Rovelli, C. (1995). Half way through the woods—Contemporary physics of space and time, inAnnual Lectures at the Center for the History and Philosophy of Science, Pittsburgh University, in press.Google Scholar
  57. Shannon, C. E. (1949).The Mathematical Theory of Communications, University of Illinois Press, Champaign-Urbana, Illinois.Google Scholar
  58. Shimony, A. (1969). InQuantum Concepts and Spacetime, R. Penrose and C. Isham, eds., Clarendon Press, Oxford.Google Scholar
  59. Schrödinger, E. (1935).Naturwissenshaften,22, 807.Google Scholar
  60. Van Fraassen, B. (1991).Quantum Mechanics: An Empiricist View, Oxford University Press, Oxford.Google Scholar
  61. Von Neumann, J. (1932).Mathematische Grundlagen der Quantenmechanik, Springer, Berlin.Google Scholar
  62. Wheeler, J. A. (1957).Reviews of Modern Physics,29, 463.CrossRefADSMathSciNetGoogle Scholar
  63. Wheeler, J. A. (1988).IBM Journal of Research and Development,32, 1.MathSciNetGoogle Scholar
  64. Wheeler, J. A. (1989). InProceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics, Tokyo.Google Scholar
  65. Wheeler, J. A. (1992). It from bit and quantum gravity, Princeton University Report.Google Scholar
  66. Wheeler, J., and Zureck, W. (1983).Quantum Theory and Measurement, Princeton University Press, Princeton, New Jersey.Google Scholar
  67. Wigner, E. P. (1961). Inthe Scientist Speculates, Good, ed., Basic Books, New York.Google Scholar
  68. Zureck, W. H. (1981).Physical Review D,24, 1516.ADSMathSciNetGoogle Scholar
  69. Zureck, W. H. (1982).Physical Review D,26, 1862.ADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Carlo Rovelli
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburgh

Personalised recommendations