International Journal of Theoretical Physics

, Volume 35, Issue 10, pp 2075–2083

Exotic smoothness, noncommutative geometry, and particle physics

  • J. Sładkowski
Article
  • 44 Downloads

Abstract

We investigate how exotic differential structures may reveal themselves in particle physics. The analysis is based on A. Connes' construction of the standard model. It is shown that, if one of the copies of the spacetime manifold is equipped with an exotic differential structure, a compact object of geometric origin may exist even if the spacetime is topologically trivial. Possible implications are discussed. AnSU(3) ⊗SU(2) ⊗U(1) gauge model is constructed. This model may not be realistic, but it shows what kind of physical phenomena might be expected due to the existence of exotic differential structures on the spacetime manifold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brans, C. H. (1994).Classical and Quantum Gravity,11, 1785.CrossRefADSMATHMathSciNetGoogle Scholar
  2. Brans, C. H., and Randall, D. (1993).General Realtivity and Gravitation,25, 205.MathSciNetGoogle Scholar
  3. Chamseddine, A. H., Felder, G., and Fröhlich, J. (1992).Physics Letters B,296, 109.CrossRefADSMathSciNetGoogle Scholar
  4. Chamseddine, A. H., Felder, G., and Fröhlich, J. (1993).Nuclear Physics B,395, 672.CrossRefADSMathSciNetGoogle Scholar
  5. Connes, A. (1983).Publications Mathematiques IHES,62, 44.Google Scholar
  6. Connes, A. (1988).Communications in Mathematical Physics,117, 673.CrossRefADSMATHMathSciNetGoogle Scholar
  7. Connes, A. (1990). inThe Interface of Mathematics and Physics, D. Quillen, G. Segal, and S. Tsou, eds., Clarendon Press, Oxford.Google Scholar
  8. Connes, A. (1994).Non-Commutative Geometry, Academic Press, New York.Google Scholar
  9. Connes, A., and Lott, J. (1990).Nuclear Physics B Proceedings Supplement,18B, 29.ADSMathSciNetGoogle Scholar
  10. DeMichelis, S., and Freedman, M. (1992).Journal of Differential Geometry,35, 219.MathSciNetGoogle Scholar
  11. Donaldson, S. K. (1983).Journal of Differential Geometry,18, 279.MATHMathSciNetGoogle Scholar
  12. Freedman, M. (1982).Journal of Differential Geometry,17, 357.MATHMathSciNetGoogle Scholar
  13. Garcia-Bondía, J. M. (n.d.). Preprint [hep-th/940475].Google Scholar
  14. Gilkey, P. B. (1974).Inventiones Mathematicae,26, 231.CrossRefADSMATHMathSciNetGoogle Scholar
  15. Gilkey, P. B. (1984a).The Index Theorem and the Heat Equation, Princeton University Press, Princeton, New Jersey.Google Scholar
  16. Gilkey, P. B. (1984b).Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Publish or Perish, Wilmington, Delaware.Google Scholar
  17. Gompf, R. E. (1983).Journal of Differential Geometry,18, 317.MATHMathSciNetGoogle Scholar
  18. Gompf, R. E. (1993).Journal of Differential Geometry,37, 199.MATHMathSciNetGoogle Scholar
  19. Hurt, N. (1983).Geometric Quantization in Action, Reidel, Dordrecht.Google Scholar
  20. Kastler, D., and Schücker, T. (1992).Teoreticheskaya i Matematicheskaya Fizika,92, 223 [English translation,Theoretical and Mathematical Physics,1993, 1075].Google Scholar
  21. Mańka, R., and Sładkowski, J. (1989).Physics Letters B,224, 97.ADSMathSciNetGoogle Scholar
  22. Sładkowski, J. (1994a).International Journal of Theoretical Physics,33, 2381.MathSciNetGoogle Scholar
  23. Sładkowski, J. (1994b).Acta Physica Polonica B,25, 1255.MathSciNetGoogle Scholar
  24. Sładkowski, J. (1996).Acta Physica Polonica B,27, 649.Google Scholar
  25. Várilly, J. G., and Garcia-Bondía, J. M. (1993).Journal of Geometry and Physics,12, 223.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • J. Sładkowski
    • 1
  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland

Personalised recommendations