Isotonic ordinal probabilistic models (ISOP)

Abstract

The concept of an ordinal instrumental probabilistic comparison is introduced. It relies on an ordinal scale given a priori and on the concept of stochastic dominance. It is used to define a weakly independently ordered system, or isotonic ordinal probabilistic (ISOP) model, which allows the construction of separate “sample-free” ordinal scales on a set of “subjects” and a set of “items”. The ISOP-model is a common nonparametric theoretical structure for unidimensional models for quantitative, ordinal and dichotomous variables.

Fundamental theorems on dichotomous and polytomous weakly independently ordered systems are derived. It is shown that the raw score system has the same formal properties as the latent system, and therefore the latter can be tested at the observed empirical level.

This is a preview of subscription content, log in to check access.

References

  1. Andersen, E. B. (1973).Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag.

    Google Scholar 

  2. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.),Statistical theories of mental test scores (pp. 397–545). Reading: Addison-Wesley.

    Google Scholar 

  3. Cliff, N., & Donoghue, J. R. (1992). Ordinal test fidelity estimated by an item sampling model.Psychometrika, 57, 217–236.

    Article  Google Scholar 

  4. Fischer, G. H. (1974).Einführung in die Theorie psychologischer Tests [Introduction into the theory of psychological tests]. Bern: Huber.

    Google Scholar 

  5. Fischer, G. H. (1987). Applying the principles of specific objectivity and of generalizability to the measurement of change.Psychometrika, 52, 565–587.

    Article  Google Scholar 

  6. Fishburn, P. C. (1973). Binary choice probabilities: On the varieties of stochastic transitivity.Journal of Mathematical Psychology, 10, 327–352.

    Google Scholar 

  7. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models.The Annals of Statistics, 14, 1523–1543.

    Google Scholar 

  8. Irtel, H. (1987). On specific objectivity as a concept in measurement. In E. E. Roskam & R. Suck (Eds.),Progress in mathematical psychology-1, (pp. 35–45). Amsterdam North-Holland: Elsevier.

    Google Scholar 

  9. Irtel, H. (1993). The uniqueness structure of simple latent trait models. In G. H. Fischer & D. Laming (Eds.),Contributions to Mathematical Psychology, Psychometrics, and Methodology (pp. 265–275). New York: Springer-Verlag.

    Google Scholar 

  10. Irtel, H., & Schmalhofer, F. (1982). Psychodiadnostik auf Ordinalskalenniveau: Meßtheoretische Grundlagen, Modelltest und Parameterschätzung [Psychodiagnostics on ordinal scale level: Measurement theoretic foundations, model test and parameter estimation].Archiv für Psychologie, 134, 197–218.

    Google Scholar 

  11. Junker, B. W. (1990).Progress in characterizing strictly unidimensional IRT representations. Pittsburgh: Carnegie Mellon University.

    Google Scholar 

  12. Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971).Foundations of measurement, Vol. 1. New York: Academic Press.

    Google Scholar 

  13. Meredith, W. (1965). Some results based on a general stochastic model for mental tests.Psychometrika, 30, 419–440.

    PubMed  Google Scholar 

  14. Mokken, R. J. (1971).A theory and procedure of scale analysis. Paris/Den Haag: Mouton.

    Google Scholar 

  15. Mokken, R. J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses.Applied Psychological Measurement, 6, 417–430.

    Google Scholar 

  16. Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  17. Rasch, G. (1977). On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. In M. Blegvad (Ed.),The Danish yearbook of philosophy (Vol. 14, pp. 58–94). Copenhagen: Munksgaard.

    Google Scholar 

  18. Robertson, T., Wright, F. T., & Dykstra, R. L. (1988).Order restricted statistical inference. New York: John Wiley.

    Google Scholar 

  19. Rosenbaum, P. R. (1988). Item bundles.Psychometrika, 53, 349–359.

    Article  Google Scholar 

  20. Scheiblechner, H. (1972). Personality and system influences on behavior in social contexts: Frequency models.Acta Psychologica, 36, 322–336.

    Article  PubMed  Google Scholar 

  21. Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms.Journal of Mathematical Psychology, 19, 18–38.

    Article  Google Scholar 

  22. Scheiblechner, H. (1994). Estimation and testing procedures for isotonic probabilistic models (ISOP). In preparation.

  23. Stout, W. F. (1987). A nonparametric approach for assessing latent trait unidimensionality.Psychometrika, 52, 589–617.

    Article  Google Scholar 

  24. Stout, W. F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation.Psychometrica, 55, 293–325.

    Google Scholar 

  25. Suppes, P., & Zinnes, J. (1963). Basic measurement theory. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology, Vol. 1. New York: Wiley.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hartmann Scheiblechner.

Additional information

I wish to thank 3 reviewers and 2 editors who contributed a lot to the readability and precision of the article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scheiblechner, H. Isotonic ordinal probabilistic models (ISOP). Psychometrika 60, 281–304 (1995). https://doi.org/10.1007/BF02301417

Download citation

Key words

  • sample-independence
  • isotonic regression
  • probabilistic pair comparison systems
  • ordinal instrumental independence
  • raw score systems
  • scoring functions