# Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp

- 193 Downloads
- 40 Citations

## Abstract

Some existing three-way factor analysis and MDS models incorporate Cattell's “Principle of Parallel Proportional Profiles”. These models can—with appropriate data—empirically determine a unique best fitting axis orientation without the need for a separate factor rotation stage, but they have not been general enough to deal with what Tucker has called “interactions” among dimensions. This article presents a proof of unique axis orientation for a considerably more general parallel profiles model which incorporates interacting dimensions. The model, X_{k}=A^{A}D_{k} H^{B}D_{k} B', does not assume symmetry in the data or in the interactions among factors. A second proof is presented for the symmetrically weighted case (i.e., where^{A}D_{k}=^{B}D_{k}). The generality of these models allows one to impose successive restrictions to obtain several useful special cases, including PARAFAC2 and three-way DEDICOM.

## Key words

Parallel proportional profiles intrinsic axes DEDICOM PARAFAC2 Cattell trilinear models quadrilinear models factor rotation problem multidimensional scaling principal components oblique confactor## Preview

Unable to display preview. Download preview PDF.

## References

- Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition.
*Psychometrika, 35*, 283–319.Google Scholar - Carroll, J. D., & Wish, M. (1974). Models and methods for three-way multidimensional scaling. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.),
*Contemporary developments in mathematical psychology: Vol. 2*(pp. 57–105). San Francisco: W. H. Freeman.Google Scholar - Cattell, R. B. (1944). “Parallel Proportional Profiles” and other principles for determining the choice of factors by rotation.
*Psychometrika, 9*, 267–283.Google Scholar - Cattell, R. B. (1978).
*The scientific use of factor analysis in behavioral and life sciences*. New York: Plenum.Google Scholar - Cattell, R. B., & Cattell, A. K. S. (1955). Factor rotation for proportional profiles: Analytical solution and an example.
*British Journal of Statistical Psychology, 8*, 83–92.Google Scholar - Dawson, M. R. W., & Harshman, R. A. (1986). The multidimensional analysis of asymmetries in alphabetic confusion matrices: Evidence for global-to-local and local-to-global processing.
*Perception & Psychophysics, 40*, 370–383.Google Scholar - de Leeuw, J., & Pruzansky, S. (1978). A new computational method to fit the weighted Euclidean distance model.
*Psychometrika, 43*, 479–490.CrossRefGoogle Scholar - Dunn, T. R., & Harshman, R. A. (1982). A multidimensional scaling model for the size-weight illusion.
*Psychometrika, 47*, 25–45.CrossRefGoogle Scholar - Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis.
*UCLA Working Papers in Phonetics, 16*, 1–84. (University Microfilms No. 10,085)Google Scholar - Harshman, R. A. (1972a). Determination and proof of minimum uniqueness conditions for PARAFAC1.
*UCLA Working Papers in Phonetics, 22*, 111–117. (University Microfilms No. 10,085)Google Scholar - Harshman, R. A. (1972b). PARAFAC2: Mathematical and technical notes.
*UCLA Working Papers in Phonetics, 22*, 30–44. (University Microfilms No. 10,085)Google Scholar - Harshman, R. A. (1992).
*Unusual uniqueness properties of a three-way factor analysis model that incorporates “higher order” factors*. Unpublished manuscript.Google Scholar - Harshman, R. A., & DeSarbo, W. (1984). An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P. McDonald (Eds.),
*Research methods for multimode data analysis*(pp. 602–642). New York: Praeger.Google Scholar - Harshman, R. A., & Lundy, M. E. (1984). The PARAFAC model. In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P. McDonald (Eds.),
*Research methods for multimode data analysis*(pp. 122–215). New York: Praeger.Google Scholar - Harshman, R. A., & Lundy, M. E. (1994). PARAFAC: Parallel factor analysis.
*Computational Statistics & Data Analysis, 18*, 39–72.CrossRefGoogle Scholar - Harshman, R. A., Green, P. E., Wind, Y., & Lundy, M. E. (1982). A model for the analysis of asymmetric data in marketing research.
*Marketing Science, 1*, 205–242.Google Scholar - Kroonenberg, P. M. (1983).
*Three mode principal component analysis*. Leiden: DSWO Press.Google Scholar - Kroonenberg, P. M., & de Leeuw, J. (1980). Principal components analysis of three-mode data by means of alternating least-squares algorithms.
*Psychometrika, 5*, 69–97.Google Scholar - Kruskal, J. B. (1976). More factors than subjects, tests than treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling.
*Psychometrika, 41*, 281–293.CrossRefGoogle Scholar - Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics.
*Linear Algebra and Its Applications, 18*, 95–138.CrossRefGoogle Scholar - Kruskal, J. B. (1981). Multilinear models for data analysis.
*Behaviormetrika, 10*, 1–20.Google Scholar - Kruskal, J. B. (1989). Rank, decomposition, and uniqueness for 3-way and N-way arrays. In R. Coppi & S. Bolasco (Eds.),
*Multiway data analysis*(pp. 7–18). Amsterdam: North Holland.Google Scholar - Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1989). How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships. In R. Coppi & S. Bolasco (Eds.),
*Multiway data analysis*(pp. 115–130). Amsterdam: North Holland.Google Scholar - Leurgans, S. E. (1991).
*Multilinear models: Array formulas*(Technical Report 473). Columbus, OH: Ohio State University, Department of Statistics.Google Scholar - Leurgans, S. E., Ross, R. T., & Abel, R. B. (1993). A decomposition for 3-way arrays.
*SIAM Journal on Matrix Analysis and Applications, 14*, 1064–1083.CrossRefGoogle Scholar - Meredith, W. (1964). Notes on factorial invariance.
*Psychometrika, 29*, 177–185.Google Scholar - Mitchell, B. C., & Burdick, D. S. (1994). Slowly converging PARAFAC sequences: Swamps and two-factor degeneracies.
*Journal of Chemometrics, 8*, 155–168.CrossRefGoogle Scholar - ten Berge, J. M. F., & Kiers, H. A. L. (1996). Some uniqueness results for PARAFAC2.
*Psychometrika, 61*, 123–132.CrossRefGoogle Scholar - Tucker, L. R. (1963). Implications of factor analysis of three-way matrices for measurement of change. In C. W. Harris (Ed.),
*Problems in measuring change*(pp. 122–137). Madison, Wisconsin: University of Wisconsin Press.Google Scholar - Tucker, L. R. (1964). The extension of factor analysis to three-dimensional matrices. In N. Frederiksen & H. Gulliksen (Eds.),
*Contributions to mathematical psychology*(pp. 109–127). New York: Holt, Rinehart, & Winston.Google Scholar - Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.
*Psychometrika, 31*, 279–311.PubMedGoogle Scholar - Tucker, L. R. (1972). Relations between multidimensional scaling and three-mode factor analysis.
*Psychometrika, 37*, 3–27.CrossRefGoogle Scholar