, Volume 50, Issue 4, pp 383–397 | Cite as

Considerations in psychometric modeling of response time

  • Bruce Bloxom


Semiparametric models express a set of distributions of event times in terms of (a) a single parameter which varies across distributions and (b) a single function which does not vary across distributions and which has an unspecified form. These models appear to be attractive alternatives to parametric models of response times in psychometrics. However, our use of such models may require incorporating additional functions which do not vary across distributions and may require expressing the models in terms of the joint distribution of response class and response time.

Key words

semiparametric model Cox regression proportional hazards accelerated life model competing risks model hazard function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, F. G. (1982). Testing assumptions of exponential additive reaction time models.Memory and Cognition, 10, 125–134.Google Scholar
  2. Audley, R. J., & Pike, A. R. (1965). Some alternative stochastic models of choice.British Journal of Mathematical and Statistical Psychology, 18(2), 207–225.Google Scholar
  3. Barlow, R. D., & Proschan, F. (1975).Statistical theory of reliability and life testing: Probability models. New York: Holt, Rinehart & Winston.Google Scholar
  4. Bloxom, B. (1979). Estimating an unobserved component of a serial response time model.Psychometrika, 44, 473–484.Google Scholar
  5. Bloxom, B. (1983). Some problems in estimating response time distributions. In H. Wainer & S. Messick (Eds.),Principals of modern psychological measurement: A festschrift in honor of Frederic M. Lord (pp. 303–328). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  6. Bloxom, B. (1984). Estimating response time hazard functions: An exposition and extension.Journal of Mathematical Psychology, 28, 401–420.CrossRefGoogle Scholar
  7. Bloxom, B. (1985). A constrained spline estimator of a hazard function.Psychometrika, 50, 301–321.CrossRefGoogle Scholar
  8. Bock, R. D. (1984, September). Contributions of empirical Bayes and marginal maximum likelihood principles to item response theory. Paper presented at the meeting of the XXIII International Congress of Psychology, Acapulco, Mexico.Google Scholar
  9. Burbeck, S. L., & Luce, R. D. (1982). Evidence from auditory simple reaction times for both change and level detectors.Perception and Psychophysics, 32, 117–133.PubMedGoogle Scholar
  10. Cox, D. R. (1972). Regression models and life tables (with discussion).Journal of the Royal Statistical Society (Series B),34, 187–220.Google Scholar
  11. Cox, D. R., & Oakes, D. (1984).Analysis of survival data. New York: Chapman and Hall.Google Scholar
  12. Dixon, W. J., Brown, M. B., Engleman, L., Frane, J. W., Hill, M. A., Jennrich, R. I., & Toporek, J. D. (1981).BMDP statistical software. Berkeley: University of California Press.Google Scholar
  13. Embretson, S. (1983). Construct validity: Construct representation versus nomothetic span.Psychological Bulletin, 93, 179–197.Google Scholar
  14. Glaser, R. E. (1980). Bathtub and related failure rate characterizations.Journal of the American Statistical Association, 75, 667–672.Google Scholar
  15. Heckman, J., & Singer, B. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data.Econometrica, 52, 271–320.Google Scholar
  16. Kalbfleisch, J. D., & Prentice, R. L. (1980).The statistical analysis of failure time data. New York: Wiley.Google Scholar
  17. Kochar, S. C. (1979). Distribution-free comparison of two probability distributions with reference to their hazard rates.Biometrika, 66, 437–441.Google Scholar
  18. Kohfeld, D. L. (1984, August). Sensory-detection models of auditory and visual RT processes. Paper presented at the meeting of the Society for Mathematical Psychology, Chicago.Google Scholar
  19. Laming, D. R. J. (1968).Information theory of choice reaction times. New York: Academic Press.Google Scholar
  20. Laming, D. R. J. (1973).Mathematical psychology. New York: Academic Press.Google Scholar
  21. Link, S. W. (1982). Correcting response measures for guessing and partial information.Psychological Bulletin, 92, 469–486.Google Scholar
  22. Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination.Psychometrika, 40, 77–105.CrossRefGoogle Scholar
  23. Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  24. Lord, F. M., & Novick, M. R. (1968).Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
  25. Luce, R. D., & Green, D. M. (1972). A neural timing theory for response times and psychophysics of intensity.Psychological Review, 79, 14–57.PubMedGoogle Scholar
  26. McCullagh, P., & Nelder, J. A. (1983).Generalized linear models. New York: Chapman and Hall.Google Scholar
  27. McGill, W. J. (1963). Stochastic latency mechanisms. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.),Handbook of mathematical psychology. New York: Wiley.Google Scholar
  28. Ramsay, J. O. (1982). When the data are functions.Psychometrika, 47, 379–396.CrossRefGoogle Scholar
  29. Rao, C. R. (1965).Linear statistical inference and its applications. New York: Wiley.Google Scholar
  30. Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review, 85, 59–108.Google Scholar
  31. Ratcliff, R. (1981). A theory of order relations in perceptual matching.Psychological Review, 88, 552–572.Google Scholar
  32. Ratcliff, R. (1985). Theoretical interpretations of the speed and accuracy of positive and negative responses.Psychological Review, 92, 212–225.CrossRefPubMedGoogle Scholar
  33. Rice, J., & Rosenblatt, M. (1983). Smoothing splines: Regression, derivatives and deconvolution.The Annals of Statistics, 11, 141–156.Google Scholar
  34. Samejiima, F. (1983).A general model for the homogeneous case of the continuous response (Report No. ONR/RR-83-3). Knoxville, TN: University of Tennessee.Google Scholar
  35. Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms.Journal of Mathematical Psychology, 19, 18–38.CrossRefGoogle Scholar
  36. Schweikert, R. (1985). Separable effects of speed and accuracy: Memory scanning, lexical decision, and choice tasks.Psychological Bulletin, 97, 530–546.Google Scholar
  37. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. In W. G. Koster (Ed.),Attention and performance II. Amsterdam: North-Holland. (Reprinted fromActa Psychologia, 1969,30)Google Scholar
  38. Stone, M. (1960). Models for choice reaction time.Psychometrika, 25, 251–260.CrossRefGoogle Scholar
  39. Takane, Y., & Sergent, J. (1983). Multidimensional scaling models for reaction times and same-different judgements.Psychometrika, 48, 393–423.CrossRefGoogle Scholar
  40. Tatsuoka, K., & Tatsuoka, M. (1979).A model for incorporating response-time data in scoring achievement tests (CERL Report No. E-7). Urbana, IL: University of Illinois, Computer-based Education Research Laboratory.Google Scholar
  41. Thissen, D. (1983). Timed testing: An approach using item response theory. In D. J. Weiss (Ed.),New horizons in testing: Latent trait test theory and computerized adaptive testing. New York: Academic Press.Google Scholar
  42. Thissen, D., & Steinberg, L. (1984). A response model for multiple choice items.Psychometrika, 49, 501–519.Google Scholar
  43. Thomas, E. A. C. (1971). Sufficient conditions for monotone hazard rate.Journal of Mathematical Psychology, 8, 303–332.CrossRefGoogle Scholar
  44. Tien, J. Y., & Ashby, F. G. (1985, May). Hazard function in choice reaction time. Paper presented at the meeting of the Midwestern Psychological Association, Chicago.Google Scholar
  45. Torgerson, W. S. (1958).Theory and methods of scaling. New York: John Wiley & Sons.Google Scholar
  46. Townsend, J. T., & Ashby, F. G. (1978). Methods of modelling capacity in simple processing systems. In N. J. Castellan & F. Restle (Eds.),Cognitive theory 3. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  47. Townsend, J. T., & Ashby, F. G. (1983).On the stochastic modelling of elementary psychological processes. Cambridge: Cambridge University Press.Google Scholar
  48. Zinnes, J. L., & Wolff, R. P. (1977). Single and multidimensional same-different judgments.Journal of Mathematical Psychology, 16, 30–50.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 1985

Authors and Affiliations

  • Bruce Bloxom
    • 1
  1. 1.Department of PsychologyVanderbilt UniversityNashville

Personalised recommendations