Psychometrika

, Volume 69, Issue 2, pp 167–190 | Cite as

Generalized multilevel structural equation modeling

  • Sophia Rabe-Hesketh
  • Anders Skrondal
  • Andrew Pickles
Theory And Methods

Abstract

A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level units in the higher-level units and missing data. A wide range of response processes can be modeled including ordered and unordered categorical responses, counts, and responses of mixed types. The structural model is similar to the structural part of a SEM except that it may include latent and observed variables varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be regressed on cluster-level latent variables. Special cases of this framework are explored and data from the British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadrature in gllamm, a freely available program running in Stata.

Key words

multilevel structural equation models generalized linear mixed models latent variables random effects hierarchical models item response theory factor models adaptive quadrature empirical Bayes GLLAMM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansari, A., & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations.Psychometrika, 65, 475–496.Google Scholar
  2. Arminger, G., & Sobel, M. (1990). Pseudo maximum likelihood estimation of mean- and covariance structures with missing data.Journal of the American Statistical Association, 85, 195–203.Google Scholar
  3. Asparouhov, T., & Muthén, B.O. (2004). Full-information maximum-likelihood estimation of general two-level latent variable models. Draft.Google Scholar
  4. Bollen, K.A. (1989).Structural Equations with Latent Variables. New York: Wiley.Google Scholar
  5. Böckenholt, U. (2001). Hierarchical modeling of paired comparison data.Psychological Methods, 6, 49–66.Google Scholar
  6. Carroll, R.J., Ruppert, D., & Stefanski, L.A. (1995).Measurement Error in Nonlinear Models. London: Chapman & Hall.Google Scholar
  7. Chou, C.-P., Bentler, P.M., & Pentz, M.A. (2000). A two-stage approach to multilevel structural equation models: application to longitudinal data. In T.D. Little, K.U. Schnabel, & J. Baumert (Eds.),Modeling Longitudinal and Multilevel Data (pp. 33–49). Mahwah, NJ: Erlbaum.Google Scholar
  8. Clayton, D. (1988). The analysis of event history data: a review of progress and outstanding problems.Statistics in Medicine, 7, 819–841.Google Scholar
  9. Clogg, C. C. (1995). Latent class models. In G. Arminger, C.C. Clogg, & M.E. Sobel (Eds.),Handbook of Statistical Modeling for the Social and Behavioral Sciences (pp. 311–359). New York: Plenum Press.Google Scholar
  10. Dohoo, I.R., Tillard, E., Stryhn, H., & Faye, B. (2001). The use of multilevel models to evaluate sources of variation in reproductive performance in dairy cattle.Preventive Veterinary Medicine, 50, 127–144.Google Scholar
  11. Fox, J.P. (2001).Multilevel IRT: A Bayesian Perspective on Estimating Parameters and Testing Statistical Hypotheses. Ph.D. thesis, University of Twente, Enschede.Google Scholar
  12. Fox, J.P., & Glas, C. A.W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling.Psychometrika, 66, 271–288.Google Scholar
  13. Fox, J.P., & Glas, C. A.W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory.Psychometrika, 68, 169–191.Google Scholar
  14. Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalised least squares.Biometrika, 73, 43–56.Google Scholar
  15. Goldstein, H. (1995).Multilevel Statistical Models. London: Arnold.Google Scholar
  16. Goldstein, H., & Browne, W. (2002). Multilevel factor analysis modeling using Markov Chain Monte Carlo (MCMC) estimation. In G.A. Marcoulides & I. Moustaki (Eds.),Latent Variable and Latent Structure Models. Mahwah, NJ: Erlbaum.Google Scholar
  17. Goldstein, H., & McDonald, R.P. (1988). A general model for the analysis of multilevel data.Psychometrika, 53, 455–467.Google Scholar
  18. Hagenaars, J.A. (1988). Latent structure models with direct effects between indicators: local dependence models.Sociological Methods & Research, 16, 379–405.Google Scholar
  19. Harper, D. (1972). Local dependence latent structure models.Psychometrika, 37, 53–59.Google Scholar
  20. Heckman, J.J. (1979). Sample selection bias as a specification error.Econometrica, 47, 153–161.Google Scholar
  21. Heckman, J.J., & Singer, B. (1984). A method of minimizing the impact of distributional assumptions in econometric models for duration data.Econometrica, 52, 271–320.Google Scholar
  22. Hox, J. (2002).Multilevel Analysis: Techniques and Applications. Mahwah, NJ: Erlbaum.Google Scholar
  23. Jöreskog, K.G. (1971). Simultaneous factor analysis in several populations.Psychometrika, 36, 409–426.Google Scholar
  24. Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In A.S. Goldberger & O.D. Duncan (Eds.),Structural Equation Models in the Social Sciences (pp. 85–112). New York: Seminar.Google Scholar
  25. Jöreskog, K.G. & Goldberger, A.S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable.Journal of the American Statistical Association, 70, 631–639.Google Scholar
  26. Jöreskog, K.G., & Sörbom, D. (1989).LISREL 7: A Guide to the Program and Applications. Chicago, IL: SPSS Publications.Google Scholar
  27. Knott, M., Albanese, M.T., & Galbraith, J.I. (1990). Scoring attitudes to abortion.The Statistician, 40, 217–223.Google Scholar
  28. Laird, N.M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution.Journal of the American Statistical Association, 73, 805–811.Google Scholar
  29. Lee, S.-Y., & Shi, J.-Q. (2001). Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data.Biometrics, 57, 787–794.Google Scholar
  30. Lee, S.-Y., & Tsang, S.-Y. (1999). Constrained maximum likelihood estimation of two-level covariance structure models via EM type algorithms.Psychometrika, 64, 435–450.Google Scholar
  31. Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example.Applied Statistics, 50, 325–335.Google Scholar
  32. Liang, J., & Bentler, P. M. (2003). An EM algorithm for fitting two-level structural equation models.Psychometrika, in press.Google Scholar
  33. Linda, N.Y., Lee, S.-Y., & Poon, W.-Y. (1993). Covariance structure analysis with three level data.Computational Statistics & Data Analysis, 15, 159–178.Google Scholar
  34. Longford, N.T. (1993).Random Coefficient Models. Oxford: Oxford University Press.Google Scholar
  35. Longford, N.T., & Muthén, B.O. (1992). Factor analysis for clustered observations.Psychometrika, 57, 581–597.Google Scholar
  36. McArdle, J.J. (1986). Latent variable growth within behavior genetic models.Behavior Genetics, 16, 163–200.Google Scholar
  37. McDonald, R.P., & Goldstein, H. (1989). Balanced and unbalanced designs for linear structural relations in two-level data.British Journal of Mathematical and Statistical Psychology, 42, 215–232.Google Scholar
  38. Meredith, W. & Tisak, J. (1990). Latent curve analysis.Psychometrika, 55, 107–122.Google Scholar
  39. Muthén, B.O. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators.Psychometrika, 49, 115–132.Google Scholar
  40. Muthén, B.O. (1985). A method for studying the homogeneity of test items with respect to other relevant variables.Journal of Educational Statistics, 10, 121–132.Google Scholar
  41. Muthén, B.O. (1989). Latent variable modeling in heterogeneous populations.Psychometrika, 54, 557–585.Google Scholar
  42. Muthén, B.O. (1994). Multilevel covariance structure analysis.Sociological Methods & Research, 22, 376–398.Google Scholar
  43. Muthén, B.O. (1997). Latent variable modeling of longitudinal and multilevel data. In A.E. Raftery (Ed.),Sociological Methodology 1997 (pp. 453–480). Cambridge, MA: Blackwell.Google Scholar
  44. Muthén, B.O. (2002). Beyond SEM: General latent variable modeling.Behaviormetrika, 29, 81–117.Google Scholar
  45. Muthén, L.K., & Muthén, B.O. (1998).Mplus User's Guide. Los Angeles, CA: Muthén & Muthén.Google Scholar
  46. Neale, M.C., & Cardon, L.R. (1992).Methodology for Genetic Studies of Twins and Families. London: Kluwer.Google Scholar
  47. Pickles, A., Pickering, K., Simonoff, E., Meyer, J., Silberg, J., & Maes, H. (1998). Genetic clocks and soft events: A twin model for pubertal development and other recalled sequences of developmental milestones.Behavior Genetics, 28, 243–253.Google Scholar
  48. Plummer, M., & Clayton, D. (1993). Measurement error in dietary assessment: an investigation using covariance structure models. Part II.Statistics in Medicine, 12, 937–948.Google Scholar
  49. Poon, W.-Y., & Lee, S.-Y. (1992). Maximum likelihood and generalized least squares analyses of two-level structural equation models.Statistics and Probability Letters, 14, 25–30.Google Scholar
  50. Rabe-Hesketh, S., & Pickles, A. (1999). Generalised linear latent and mixed models. In H. Friedl, A. Berghold & G. Kauermann (Eds.),Proceedings of the 14th International Workshop on Statistical Modeling (pp. 332–339). Graz, Austria.Google Scholar
  51. Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001a). GLLAMM: A general class of multilevel models and a Stata program.Multilevel Modelling Newsletter, 13, 17–23.Google Scholar
  52. Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001b).GLLAMM Manual. Tech. rept. 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, King's College, University of London. Downloadable from http://www.gllamm.org.Google Scholar
  53. Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2003). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation.Statistical Modelling, 3, 215–232.Google Scholar
  54. Rabe-Hesketh, S., Pickles, A., & Taylor, C. (2000). sg129: Generalized linear latent and mixed models.Stata Technical Bulletin, 53, 47–57.Google Scholar
  55. Rabe-Hesketh, S., & Skrondal, A. (2001). Parameterization of multivariate random effects models for categorical data.Biometrics, 57, 1256–1264.Google Scholar
  56. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature.The Stata Journal, 2, 1–21.Google Scholar
  57. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2003). Maximum likelihood estimation of generalized linear models with covariate measurement error.The Stata Journal, 3, 386–411.Google Scholar
  58. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects.Journal of Econometrics, in press.Google Scholar
  59. Rabe-Hesketh, S., Toulopoulou, T., & Murray, R. (2001). Multilevel modeling of cognitive function in schizophrenic patients and their first degree relatives.Multivariate Behavioral Research, 36, 279–298.Google Scholar
  60. Rabe-Hesketh, S., Yang, S., & Pickles, A. (2001). Multilevel models for censored and latent responses.Statistical Methods in Medical Research, 10, 409–427.Google Scholar
  61. Rasbash, J., Browne, W., Goldstein, H., Yang, M., Plewis, I., Healy, M., Woodhouse, G., Draper, D., Langford, I., & Lewis, T. (2000).A User's Guide to MLwiN (second edition). London: Institute of Education, University of London.Google Scholar
  62. Raudenbush, S.W. (1995). Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm.British Journal of Mathematical and Statistical Psychology, 48, 359–370.Google Scholar
  63. Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., & Congdon, R. (2000).HLM 5: Hierarchical Linear and Nonlinear Modeling. Lincolnwood, IL: Scientific Software International.Google Scholar
  64. Raudenbush, S.W., & Bryk, A.S. (2002).Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: Sage.Google Scholar
  65. Raudenbush, S.W., & Sampson, R. (1999a). Assessing direct and indirect effects in multilevel designs with latent variables.Sociological Methods & Research, 28, 123–153.Google Scholar
  66. Raudenbush, S.W., & Sampson, R. (1999b). Ecometrics: toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods. In P.V. Marsden (Ed.),Sociological Methodology 1999, vol. 29 (pp. 1–41). Oxford: Blackwell.Google Scholar
  67. Rijmen, F., Tuerlinckx, F., De Boeck, P., and Kuppens, P. (2003). A nonlinear mixed model framework for IRT models.Psychological Methods, 8, 185–205.Google Scholar
  68. Rindskopf, D. (1984). Using phantom and imaginary latent variables to parameterize constraints in linear structural models.Psychometrika, 49, 37–47.Google Scholar
  69. Skrondal, A., & Laake, P. (2001). Regression among factor scores.Psychometrika, 66, 563–576.Google Scholar
  70. Skrondal, A., & Rabe-Hesketh, S. (2003a). Multilevel logistic regression for polytomous data and rankings.Psychometrika, 68, 267–287.Google Scholar
  71. Skrondal, A., & Rabe-Hesketh, S. (2003b). Some applications of generalized linear latent and mixed models in epidemiology: Repeated measures, measurement error and multilevel modeling.Norwegian Journal of Epidemiology, 13, 265–278.Google Scholar
  72. Skrondal, A., & Rabe-Hesketh, S. (2004a).Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  73. Skrondal, A., & Rabe-Hesketh, S. (2004b). Generalized linear latent and mixed models with composite links and exploded likelihoods. In A. Biggeri, E. Dreassi, C. Lagazio & M. Marchi (Eds.),Proceedings of the 19th International Workshop on Statistical Modeling (pp. 27–39). Florence, Italy: Firenze University Press.Google Scholar
  74. Skrondal, A., Rabe-Hesketh, S., & Pickles, A. (2002). Informative dropout and measurement error in cluster randomised trials. Paper presented at the International Biometric Society Conference 2002, Freiburg.Google Scholar
  75. Social and Community Planning Research (1987).British Social Attitudes Panel Survey, 1983–1986 [Computer file] SN: 2197. Colchester, Essex: The Data Archive [Distributor].Google Scholar
  76. Spiegelhalter, D., Thomas, A., Best, N., & Gilks, W. (1996).BUGS 0.5 Bayesian Analysis using Gibbs sampling. Manual (version ii). Cambridge: MRC-Biostatistics Unit. Downloadable from http://www.mrc-bsu.cam.ac.uk/bugs/documentation/contents.shtml.Google Scholar
  77. StataCorp. (2003).Stata Statistical Software: Release 8.0. College Station, TX: Stata Corporation.Google Scholar
  78. Takane, Y. (1987). Analysis of covariance structures and probabilistic binary data.Communication & Cognition, 20, 45–62.Google Scholar
  79. Wiggins, R.D., Ashworth, K., O'Muircheartaigh, C.A., & Galbraith, J.I. (1990). Multilevel analysis of attitudes to aboration.The Statistician, 40, 225–234.Google Scholar
  80. Yang, S., & Pickles, A. (2004). Multilevel latent models for multivariate responses subject to measurement error.Submitted for publication.Google Scholar
  81. Yang, S., Pickles, A., & Taylor, C. (1999). Multilevel latent variable model for analysing two-phase survey data. In H. Friedl, A. Berghold, & G. Kauermann (Eds.)Proceedings of the 14th International Workshop on Statistical Modeling (pp. 402–408). Graz, Austria.Google Scholar

Copyright information

© The Psychometric Society 2004

Authors and Affiliations

  • Sophia Rabe-Hesketh
    • 1
  • Anders Skrondal
    • 2
  • Andrew Pickles
    • 3
  1. 1.Graduate School of EducationUniversity of CaliforniaBerkeleyUSA
  2. 2.Norwegian Institute of Public HealthOslo
  3. 3.The University of ManchesterUK

Personalised recommendations