Psychometrika

, Volume 68, Issue 4, pp 589–606 | Cite as

A hierarchical bayesian statistical framework for response time distributions

  • Jeffrey N. Rouder
  • Dongchu Sun
  • Paul L. Speckman
  • Jun Lu
  • Duo Zhou
Theory And Methods

Abstract

This paper provides a statistical framework for estimating higher-order characteristics of the response time distribution, such as the scale (variability) and shape. Consideration of these higher order characteristics often provides for more rigorous theory development in cognitive and perceptual psychology (e.g., Luce, 1986). RT distribution for a single participant depends on certain participant characteristics, which in turn can be thought of as arising from a distribution of latent variables. The present work focuses on the three-parameter Weibull distribution, with parameters for shape, scale, and shift (initial value). Bayesian estimation in a hierarchical framework is conceptually straightforward. Parameter estimates, both for participant quantities and population parameters, are obtained through Markov Chain Monte Carlo methods. The methods are illustrated with an application to response time data in an absolute identification task. The behavior of the Bayes estimates are compared to maximum likelihood (ML) estimates through Monte Carlo simulations. For small sample size, there is an occasional tendency for the ML estimates to be unreasonably extreme. In contrast, by borrowing strength across participants, Bayes estimation “shrinks” extreme estimates. The results are that the Bayes estimators are more accurate than the corresponding ML estimators.

Key words

Bayesian analysis hierarchical models response time MCMC Weibull distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, J., & Dieter, U. (1974). Computer methods for sampling from gamma, beta, poisson and binomial distributions.Computing, 12, 223–246.Google Scholar
  2. Ahrens, J., & Dieter, U. (1982). Generating gamma variates by a modified rejection technique.Communications of the Association for Computing Machinery (ACM), 25, 47–54.Google Scholar
  3. Andrews, S., & Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: A matter of some moment.Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 514–544.CrossRefGoogle Scholar
  4. Ashby, F. G., Tien, J.-Y., & Balikrishnan, J.D. (1993). Response time distributions in memory scanning.Journal of Mathematical Psychology, 37, 526–555.Google Scholar
  5. Ashby, F. G., & Townsend, J.T. (1980). Decomposing the reaction time distribution: Pure insertion and selective influences revisited.Journal of Mathematical Psychology, 21, 93–123.CrossRefGoogle Scholar
  6. Balota, D.A., & Chumbley, J.I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage.Journal of Experimental Psychology: Human Perception and Performance, 10, 340–357.PubMedGoogle Scholar
  7. Balota, D.A., & Spieler, D.H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General, 128, 32–55.CrossRefGoogle Scholar
  8. Berger, J.O., & Sun, D. (1993). Bayesian analysis for the poly-Weibull distribution.Journal of the American Statistical Association, 88, 1412–1418.Google Scholar
  9. Bowman, K.O., & Shenton, L.R. (1988).Properties of estimators for the gamma distribution. New York, NY: Marcel Dekker.Google Scholar
  10. Busemeyer, J.R., & Townsend, J.T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Psychological Review, 100, 432–459.CrossRefPubMedGoogle Scholar
  11. Cave, C., & Squire, L. (1992). Intact and long-lasting repetition priming in amnesia.Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 509–520.CrossRefGoogle Scholar
  12. Dey, D., Ghosh, S., & Mallick, B. (2000).Generalized linear models: A Bayesian perspective. New York, NY: Marcel Dekker.Google Scholar
  13. Dolan, C., van der Maas, H., & Mollenaar, C. M. (in press). A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring.Behavioral Research Methods, Instruments, and Computers.Google Scholar
  14. Dzhafarov, E.N. (1992). The structure of simple reaction time to step-function signals.Journal of Mathematical Psychology, 36, 235–268.Google Scholar
  15. Fox, J.P., & Glas, C.A.W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling.Psychometrika, 66, 271–288.CrossRefGoogle Scholar
  16. Gelfand, A., & Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities.Journal of the American Statistical Association, 85, 398–409.Google Scholar
  17. Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995).Bayesian data analysis. London, U.K.: Chapman and Hall.Google Scholar
  18. Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences (with discussion).Statistical Science, 7, 457–511.Google Scholar
  19. Gilks, W. & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling.Applied Statistics, 41, 337–348.Google Scholar
  20. Hasher, L., & Zacks, R.T. (1979). Automatic and effortful processes in memory.Journal of Experimental Psychology: General, 108, 356–388.Google Scholar
  21. Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavioral Research Methods, Instruments, and Computers, 28, 427–445.Google Scholar
  22. Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task.Psychological Bulletin, 109, 340–347.CrossRefGoogle Scholar
  23. Hockley, W.E. (1984). Analysis of reaction time distributions in the study of cognitive processes.Journal of Experimental Psychology: Learning, Memory, & Cognition, 10, 598–615.Google Scholar
  24. Hohle, R.H. (1965). Inferred components of reaction time as a function of foreperiod duration.Journal of Experimental Psychology, 69, 382–386.PubMedGoogle Scholar
  25. Hsu, Y.F. (1999).Two studies on simple reaction times: I. On the psychophysics of the generalized Pieron's law. II. On estimating minimum detection times using the time estimation paradigm. Unpublished doctoral dissertation. Irvine, CA: University of California.Google Scholar
  26. Jacoby, L.L. (1991). A process dissociation framework: Separating automatic fromm intentional uses of memory.Journal of Memory and Language, 30, 513–541.CrossRefGoogle Scholar
  27. Jiang, Y., Rouder, J.N., & Speckman, P.L. (in press). A note on the sampling properties of the Vincentizing (quantile averaging) procedure.Journal of Mathematical Psychology.Google Scholar
  28. Johnson, N.L., Kotz, S., & Balakrishnan, N. (1994).Continuous univariate distributions, Volume 2 (2nd ed.). New York, NY: John Wiley & Wiley.Google Scholar
  29. Kreft, I.G.G., & de Leeuew, J. (1998).Introducing multilevel modeling. London, U.K.: Sage.Google Scholar
  30. Link, S.W. (1975). The relative judgement theory of two choice response time.Journal of Mathematical Psychology, 12, 114–135.CrossRefGoogle Scholar
  31. Logan, G.D. (1988). Towards an instance theory of automization.Psychological Review, 95, 492–527.CrossRefGoogle Scholar
  32. Logan, G.D. (1992). Shapes of reaction time distributions and shapes of learning curves: A test of the instance theory of automaticity.Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 883–914.CrossRefGoogle Scholar
  33. Luce, R.D. (1986).Response times. New York, NY: Oxford University Press.Google Scholar
  34. Madden, D.J., Gottlob, L.R., Denny, L.L., Turkington, T.G., Provenzale, J.M., Hawk, T.C., & Coleman, R.E. (1999). Aging and recognition memory: Changes in regional cerebral blood flow associated with components of reaction time distributions.Journal of Cognitive Neuroscience, 11, 511–520.CrossRefPubMedGoogle Scholar
  35. Mitchell, D. & Brown, A. (1988). Persistent repetition priming in picture naming and its dissociation from recognition memory.Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 213–222.CrossRefGoogle Scholar
  36. Nelder, J.A., & Mead, R. (1965). A simplex method for function minimization.Computer Journal, 7, 308–313.Google Scholar
  37. Petrusic, W.M., Baranski, J.V., & Kennedy, R. (1999). Similarity comparisons with remembered and perceived magnitudes: Memory psychophysics and fundamental measurement.Memory & Cognition, 26, 1041–1055.Google Scholar
  38. Plourde, C.E., & Besner, D. (1997). On the locus of the word frequency effect in visual word recognition.Canadian Journal of Experimental Psychology, 51, 181–194.Google Scholar
  39. Posner, M.I. (1978).Chronometric explorations of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  40. Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, F.P. (1992).Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge, England: Cambridge University Press.Google Scholar
  41. Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review, 85, 59–108.Google Scholar
  42. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin, 86, 446–461.PubMedGoogle Scholar
  43. Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for decisions between two choices.Psychological Science, 9, 347–356.CrossRefGoogle Scholar
  44. Ratcliff, R., & Rouder, J. (2000). A diffusion model analysis of letter masking.Journal of Experimental Psychology: Human Perception and Performance, 26, 127–140.CrossRefPubMedGoogle Scholar
  45. Rouder, J.N. (1996). Premature sampling in random walks.Journal of Mathematical Psychology, 40, 287–296.CrossRefGoogle Scholar
  46. Rouder, J.N. (2000). Assessing the roles of change discrimination and luminance integration: Evidence for a hybrid race model of perceptual decision making in luminance discrimination.Journal of Experimental Psychology: Human Perception and Performance, 26, 359–378.CrossRefPubMedGoogle Scholar
  47. Rouder, J.N. (2001). Testing evidence accrual models by manipulating stimulus onset.Journal of Mathematical Psychology, 45, 334–354.CrossRefPubMedGoogle Scholar
  48. Schnieder, W., & Shiffrin, R.M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention.Psychological Review, 84, 1–66.Google Scholar
  49. Smith, P.L. (1995). Multiple detector models of visual simple reaction time.Psychological Review, 102, 567–593.CrossRefGoogle Scholar
  50. Smith, R.L., & Naylor, J.C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution.Applied Statistician, 36, 358–369.Google Scholar
  51. Spieler, D.H., Balota, D.A., & Faust, M.E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer's type.Journal of Experimental Psychology: Human Perception and Performance, 22, 461–479.CrossRefPubMedGoogle Scholar
  52. Spieler, D.H., Balota, D.A., & Faust, M.E. (2000). Levels of selective attention revealed through analyses of response time distributions.Journal of Experimental Psychology: Human Perception and Performance, 26, 506–526.CrossRefPubMedGoogle Scholar
  53. Sternberg, S. (1966). High-speed scanning in human memory.Scuebce, 153, 652–654.Google Scholar
  54. Tanner, M.A. (1993).Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions. Berlin, Germany: Springer.Google Scholar
  55. Thomas, E.A.C., & Ross, B. (1980). On appropriate procedures for combining probability distributions within the same family.Journal of Mathematical Psychology, 21, 136–152.CrossRefGoogle Scholar
  56. Townsend, J.T., & Ashby, F.G. (1983).Stochastic modeling of elementary psychological processes. Cambridge, U.K.: Cambridge University Press.Google Scholar
  57. Treisman, A.M., & Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology, 12, 97–136.CrossRefPubMedGoogle Scholar
  58. Ulrich, R., & Miller, J.O. (1993). Information processing models generating lognormally distributed reaction times.Journal of Mathematical Psychology, 37, 513–525.CrossRefGoogle Scholar
  59. Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin and Review, 7, 424–465.PubMedGoogle Scholar
  60. Van Zandt, T., Colonius, H., & Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching.Psychonomic Bulletin and Review, 7, 208–256.PubMedGoogle Scholar
  61. Vincent, S.B. (1912). The function of vibrissae in the behavior of the white rat.Behavioral Monographs, 1, No. 5.Google Scholar
  62. Wang, X.H., Bradlow, E.T., & Wainer, H. (2002). A general Bayesian model for testlets: Theory and applications.Applied Psychological Measurement, 26, 109–128.CrossRefGoogle Scholar
  63. Wild, P., & Gilks, W.R. (1993). Adaptive rejection sampling from log-concave density functions.Applied Statistics, 42, 701–708.Google Scholar
  64. Wixted, J.T., & Rohrer, D. (1993). Proactive interference and the dynamics of free recall.Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 1024–1039.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2003

Authors and Affiliations

  • Jeffrey N. Rouder
    • 1
  • Dongchu Sun
    • 1
  • Paul L. Speckman
    • 1
  • Jun Lu
    • 1
  • Duo Zhou
    • 1
  1. 1.Department of Psychological SciencesUniversity of MissouriColumbia

Personalised recommendations