Psychometrika

, Volume 51, Issue 4, pp 589–601 | Cite as

Bayesian estimation in the three-parameter logistic model

  • Hariharan Swaminathan
  • Janice A. Gifford

Abstract

A joint Bayesian estimation procedure for the estimation of parameters in the three-parameter logistic model is developed in this paper. Procedures for specifying prior beliefs for the parameters are given. It is shown through simulation studies that the Bayesian procedure (i) ensures that the estimates stay in the parameter space, and (ii) produces better estimates than the joint maximum likelihood procedure as judged by such criteria as mean squared differences between estimates and true values.

Key words

Bayes estimation three-parameter logistic model item response theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of the EM algorithm.Psychometrika, 46, 443–460.CrossRefGoogle Scholar
  2. Hambleton, R. K., & Rovinelli, R. (1973). A FORTRAN IV program for generating examinees response data from logistic test models.Behavioral Science, 18, 74.Google Scholar
  3. Hambleton, R. K., Swaminathan, H., Cook, L. L., Eignor, D. R., & Gifford, J. A. (1978). Developments in latent train theory: Models, technical issues, and applications.Review of Educational Research, 48, 467–510.Google Scholar
  4. Lindley, D. V., & Smith, A. F. (1972). Bayesian estimates for the linear model.Journal of the Royal Statistical Society, 34, (Series B), 1–41.Google Scholar
  5. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale: Lawrence Erlebaum.Google Scholar
  6. Loyd, B. H., & Hoover, H. D. (1980) Vertical equating using the Rasch model.Journal of Educational Measurement, 17, 179–193.CrossRefGoogle Scholar
  7. Mislevy, R. J. (1986) Bayes Modal Estimation in Item Response Models.Psychometrika, 51, 177–195.CrossRefGoogle Scholar
  8. Novick, M. R., & Jackson, P. H. (1974).Statistical methods for educational and psychological research. New York: McGraw-Hill.Google Scholar
  9. Novick, M. R., Lewis, C., & Jackson, P. H. (1973). The estimation of proportions inm groups.Psychometrika, 38, 19–46.CrossRefGoogle Scholar
  10. Slinde, J. A., & Linn, R. L. (1979). A note on vertical equating via the Rasch model for groups of quite different ability and tests of quite different difficulty.Journal of Educational Measurement, 16, 159–165.CrossRefGoogle Scholar
  11. Swaminathan, H., & Gifford, J. A. (1982). Bayesian estimation in the Rasch model.Journal of Educational Statistics, 7, 175–192.Google Scholar
  12. Swaminathan, H., & Gifford, J. A. (1985). Bayesian estimation in the two-parameter logistic model.Psychometrika, 50, 349–364.CrossRefGoogle Scholar
  13. Urry, V. W. (1976). Ancilliary estimators for the item parameters of mental tests. In W. A. Gorham (Chair),Computerized testing: Steps toward the inevitable conquest (PS-76-1). Washington, DC: US Civil Service Commission, Personnel Research and Development Center.Google Scholar
  14. Wood, R. L., Wingersky, M. S., & Lord, F. M. (1978).LOGIST: A computer program for estimating ability and item characteristic curve parameters (Research Memorandum 76-6, rev. ed.). Princeton, NJ: Educational Testing Service.Google Scholar

Copyright information

© The Psychometric Society 1986

Authors and Affiliations

  • Hariharan Swaminathan
    • 1
  • Janice A. Gifford
    • 2
  1. 1.School of EducationUniversity of MassachusettsAmherst
  2. 2.Mount Holyoke CollegeUSA

Personalised recommendations