Advertisement

Psychometrika

, Volume 51, Issue 4, pp 513–534 | Cite as

Describing the elephant: Structure and function in multivariate data

  • Roderick P. McDonald
Article

Abstract

There is a unity underlying the diversity of models for the analysis of multivariate data. Essentially, they constitute a family models, most generally nonlinear, for structural/functional relations between variables drawn from a behavior domain.

Key words

factor analysis regression multivariate analysis components optimal scaling test theory item response theory linear structural relations nonlinear models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T. W. (1958).An introduction to multivariate statistical analysis New York: Wiley.Google Scholar
  2. Anderson, T. W. (1959). Some scaling models and estimation procedures in the latent class model. In U. Grenander (Ed.),Probability and statistics: The Harold Cramer volume. New York: Wiley.Google Scholar
  3. Anderson, T. W., & Rubin, H. (1956). Statistical inference in factor analysis.Proceedings of the third Berkeley Symposium on mathematical statistics and probability, 5, 111–150.Google Scholar
  4. Bartholomew, D. J. (1980). Factor analysis for categorical data.Journal of the Royal Statistical Society, 42 (Series B), 293–321.Google Scholar
  5. Bartholomew, D. J. (1981). Posterior analysis of the factor model.British Journal of Mathematical and Statistical Psychology, 34, 93–99.Google Scholar
  6. Bartholomew, D. J. (1984). The foundations of factor analysis.Biometrika, 71, 221–232.Google Scholar
  7. Bartholomew, D. J. (1985) Foundations of factor analysis: Some practical implications.British Journal of mathematical and statistical Psychology, 38, 1–10.Google Scholar
  8. Bartholomew, D. J., & McDonald, R. P. (in press). Foundations of factor analysis: A further comment.British Journal of mathematical and statistical Psychology.Google Scholar
  9. Bentler, P. M. (1968). Alpha-maximized factor analysis (alpha max); its relation to alpha and canonical factor analysis.Psychometrika, 33, 335–345.CrossRefPubMedGoogle Scholar
  10. Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures.Psychometrika, 48, 493–517.Google Scholar
  11. Bentler, P. M., & Lee, S.-Y. (1975). Some extensions of matrix calculus.General Systems, 20, 145–150.Google Scholar
  12. Bentler, P. M., & Lee, S.-Y. (1978). Matrix derivatives with chain rule and rules for simple Hadamard and Kronecker products.Journal of Mathematical Psychology, 17, 255–262.Google Scholar
  13. Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables.Psychometrika, 45, 289–308.Google Scholar
  14. Bentler, P. M. & Weeks, D. G. (1985). Some comments on structural equation models.British Journal of Mathematical and Statistical Psychology, 38, 120–121.Google Scholar
  15. Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories.Psychometrika, 37, 29–51.Google Scholar
  16. Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures.South African statistical Journal, 8, 1–24.Google Scholar
  17. Browne, M. W. (1977). The analysis of patterned correlation matrices by generalized least squares.British Journal of mathematical and statistical Psychology, 1977,30, 113–124.Google Scholar
  18. Browne, M. W. (1980). Factor analysis of multiple batteries by maximum likelihood.British Journal of Mathematical and Statistical Psychology, 33, 184–199.Google Scholar
  19. Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.Google Scholar
  20. Browne, M. W. (1984). Asymptotically distribution-free methods in the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 37, 62–83.PubMedGoogle Scholar
  21. Browne, M. W. (1986). Robustness of statistical inference in factor analysis and related models (Research Report 86/1). Pretoria: University of South Africa, Department of Statistics.Google Scholar
  22. Browne, M. W., & Cudeck, R. (1983). Benwee (Version II), A computer programme for path analysis with latent variables (Report 8–46). Pretoria: Human Sciences Research Council.Google Scholar
  23. Carnap, R. (1936). Testability and meaning.Philosophy of Science, 3, 420–468. (Also 1937,4, 1–40.)CrossRefGoogle Scholar
  24. Christofferson, A. (1975). Factor analysis of dichotomized variables.Psychometrika, 40, 5–32.Google Scholar
  25. de Leeuw, J. (1982). Generalized eigenvalue problems with positive semi-definite matrices.Psychometrika, 47, 87–93.Google Scholar
  26. Dwyer, P. S., & MacPhail, M. S. (1948). Symbolic matrix derivatives.Annals of Mathematical Statistics, 19, 517–534.Google Scholar
  27. Etezadi-Amoli, J., & McDonald, R. P. (1983). A second generation nonlinear factor analysis.Psychometrika, 48, 315–342.CrossRefGoogle Scholar
  28. Fraser, C. (1980). COSAN users' guide. Toronto: Department of MECA, The Ontario Institute for Studies in Education.Google Scholar
  29. Fraser, C. (1983). Noharm II: A Fortran program for fitting unidimensional and multidimensional normal ogive models of latent trait theory. Armidale: University of New England, Centre for Behavioural Studies.Google Scholar
  30. Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares.Biometrika, 73, 43–56.Google Scholar
  31. Goldstein, H., & McDonald, R. P. (1986). A general model for the analysis of multilevel data. Unpublished manuscript.Google Scholar
  32. Guttman, L. (1940). Multiple rectilinear prediction and the resolution into components.Psychometrika, 5, 75–99.CrossRefGoogle Scholar
  33. Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In P. Horst (Ed.),The prediction of personal adjustment (pp. 319–348). New York: Social Science Research Council.Google Scholar
  34. Guttman, L. (1950). The principal components of scale analysis. In S. S. Stouffer (Ed.),Measurement and prediction. Princeton: Princeton University Press.Google Scholar
  35. Guttman, L. (1953). Image theory for the structure of quantitative variates.Psychometrika, 18, 277–296.Google Scholar
  36. Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common factor theory.British Journal of Statistical Psychology, 8, 65–82.Google Scholar
  37. Harris, C. W. (1967). On factors and factor scores.Psychometrika, 32, 353–379.CrossRefGoogle Scholar
  38. Hattie, J. (1984). An empirical study of various indices for determining unidimensionality.Multivariate Behavioral Research, 19, 49–78.CrossRefGoogle Scholar
  39. Heise, D. R. & Bohrnstedt, G. W. (1970). Validity, invalidity, and reliability. In E. E. Borgatta (Ed.),Sociological Methodology (pp. 104–129). San Francisco: Jossey-Bass.Google Scholar
  40. Hempel, C. G. (1954). A logical appraisal of operationism.Scientific Monthly, 79, 215–220.Google Scholar
  41. Jennrich, R. I., & Robinson, S. M. (1969). A Newton-Raphson algorithm for maximum likelihood factor analysis.Psychometrika, 34, 111–123.Google Scholar
  42. Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis.Psychometrika, 32, 443–482.CrossRefGoogle Scholar
  43. Jöreskog, K. G. (1970). A general method for analysis of covariance structures.Biometrika, 57, 239–251.Google Scholar
  44. Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.),Structural equation models in the social sciences. New York: Seminar Press.Google Scholar
  45. Kaiser, H. F., & Michael, W. B. (1975). Domain validity and generalizability.Educational and psychological Measurement, 35, 31–35.Google Scholar
  46. Kestelman, H. (1952). The fundamental equation of factor analysis.British Journal of Psychology, Statistical Section, 5, 1–6.Google Scholar
  47. Krane, W. R., & McDonald, R. P. (1978). Scale-invariant estimators in common factor analysis and related models.British Journal of mathematical and statistical Psychology, 31, 218–228.Google Scholar
  48. Kruskal, J. B. (1964). Nonmetric multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis.Psychometrika, 29, 1–27.Google Scholar
  49. Kruskal, J. B., & Shepard, R. N. (1974). A nonmetric variety of linear factor analysis.Psychometrika, 39, 123–157.CrossRefGoogle Scholar
  50. Lazarsfeld, P. F. (1950). The logical and mathematical foundations of latent structure analysis. In S. S. Stouffer. (Ed.),Measurement and prediction (pp. 362–412). Princeton: Princeton University Press.Google Scholar
  51. Lord, F. M. & Novick, M. R. (1968).Statistical theories of mental test scores (with contributions by Alan Birnbaum). Reading, Mass: Addison-Wesley.Google Scholar
  52. Martin, J. K., & McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases.Psychometrika, 40, 505–517.CrossRefGoogle Scholar
  53. McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures.British Journal of Mathematical and Statistical Psychology, 37, 234–251.PubMedGoogle Scholar
  54. McDonald, R. P. (1962a). Note on the derivation of the general latent class model.Psychometrika, 27, 203–206.Google Scholar
  55. McDonald, R. P. (1962b). A general approach to nonlinear factor analysis.Psychometrika, 27, 397–415.Google Scholar
  56. McDonald, R. P. (1965). Difficulty factors and nonlinear factor analysis.British Journal of Mathematical Statistical Psychology, 18, 11–23.Google Scholar
  57. McDonald, R. P. (1967a). Nonlinear factor analysis.Psychometric Monograph No. 15, 32(4, Pt. 2).Google Scholar
  58. McDonald, R. P. (1967b). Numerical methods for polynomial models in nonlinear factor analysis.Psychometrika, 32, 77–112.Google Scholar
  59. McDonald, R. P. (1967a). Some IBM 7090-94 programs for nonlinear factor analysis.Behavioral Science, 12, 72–74.Google Scholar
  60. McDonald, R. P. (1967d).PROTEAN—A comprehensive CD 3200/3600 program for nonlinear factor analysis (Research Memorandum RM-67-26). Princeton, NJ Educational Testing Service.Google Scholar
  61. McDonald, R. P. (1967e). Factor interaction in nonlinear factor analysis.British Journal of Mathematical and Statistical Psychology, 20, 205–215.PubMedGoogle Scholar
  62. McDonald, R. P. (1968a). A CD 3200/3600 program for nonlinear factor analysis.Behavioral Science, 13, 513–515.Google Scholar
  63. McDonald, R. P. (1968b). A unified treatment of the weighting problem.Psychometrika, 33, 351–381.CrossRefPubMedGoogle Scholar
  64. McDonald, R. P. (1969a). A generalized common factor analysis based on residual covariance matrices of prescribed structure.British Journal of Mathematical and Statistical Psychology, 22, 149–163.Google Scholar
  65. McDonald, R. P. (1969b). The common factor analysis of multicategory data.British Journal of Mathematical and Statistical Psychology, 22, 165–175.Google Scholar
  66. McDonald, R. P. (1970a). Three common factor models for groups of variables.Psychometrika, 35, 111–128.CrossRefGoogle Scholar
  67. McDonald, R. P. (1970b). The theoretical foundations of common factor analysis, principal factor analysis and alpha factor analysis.British Journal of Mathematical and Statistical Psychology, 23, 1–21.Google Scholar
  68. McDonald, R. P. (1972, March). Newton-Raphson methods in unrestricted factor analysis. Paper presented at Psychometric Society Conference, Princeton.Google Scholar
  69. McDonald, R. P. (1974a). The measurement of factor indeterminacy.Psychometrika, 39, 203–222.Google Scholar
  70. McDonald, R. P. (1974b). Testing pattern hypotheses for covariance matrices.Psychometrika, 39, 189–201.Google Scholar
  71. McDonald, R. P. (1975a). Descriptive axioms for common factor theory, image theory, and component theory.Psychometrika, 40, 137–152.Google Scholar
  72. McDonald, R. P. (1975b). Testing pattern hypotheses for correlation matrices.Psychometrika, 40, 253–255.Google Scholar
  73. McDonald, R. P. (1976a). A note on monotone polygons fitted to bivariate data.Psychometrika, 41, 543–546.Google Scholar
  74. McDonald, R. P. (1976b). The McDonald-Swaminathan calculus: Clarifications, extensions and illustrations.General Systems, 21, 87–94.Google Scholar
  75. McDonald, R. P. (1977). The indeterminacy of components and the definition of common factors.British Journal of Mathematical and Statistical Psychology, 30, 165–176.Google Scholar
  76. McDonald, R. P. (1978a). A simple comprehensive model for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 31, 59–72.Google Scholar
  77. McDonald, R. P. (1978b). Generalizability in factorable domains: Domain validity and generalizability.Educational and Psychological Measurement, 38, 75–79.Google Scholar
  78. McDonald, R. P. (1978c, October). A simple procedure for estimating ordered parameters, with applications to scaling. Paper presented at N.E.R.A. Conference.Google Scholar
  79. McDonald, R. P. (1979a). The structure of multivariate data: A sketch of a general theory.Multivariate Behavioral Research, 14, 21–38.CrossRefGoogle Scholar
  80. McDonald, R. P. (1979b). The simultaneous estimation of factor loadings and scores.British Journal of Mathematical and Statistical Psychology, 32, 212–228.Google Scholar
  81. McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures: Some remarks on applications.British Journal of Mathematical and Statistical Psychology, 33, 161–183.Google Scholar
  82. McDonald, R. P. (1981). The dimensionality of tests and items.British Journal of Mathematical and Statistical Psychology, 34, 100–117.Google Scholar
  83. McDonald, R. P. (1982a). Linear versus nonlinear models in item response theory.Applied Psychological Measurement, 6, 379–396.Google Scholar
  84. McDonald, R. P. (1982b). A note on the investigation of local and global identifiability.Psychometrika, 47, 101–103.CrossRefGoogle Scholar
  85. McDonald, R. P. (1982c). Some alternative approaches to the improvement of measurement in education and psychology: Fitting latent trait models. In D. Spearritt (Ed.),The improvement of measurement in education and psychology (pp. 213–237). Burwood Australian Council for Educational Research.Google Scholar
  86. McDonald, R. P. (1982d, July). Unidimensional and multidimensional models for item response theory. Paper presented at IRT/CAT conference, Minneapolis, MN.Google Scholar
  87. McDonald, R. P. (1983a). Exploratory and confirmatory nonlinear factor analysis. In H. Wainer & S. Messick (Eds.),Principals of modern psychological measurement: festschrift for Frederic M. Lord (pp. 197–213). Hillsdale, NJ: Erlbaum.Google Scholar
  88. McDonald, R. P. (1983b). Alternative weights and invariant parameters in optimal scaling.Psychometrika, 48, 377–391.CrossRefGoogle Scholar
  89. McDonald, R. P. (1984). Confirmatory models for nonlinear structural analysis.Data analysis and informatics, III. E. Diday et al. (Eds.). Elsevier Science Publishers.Google Scholar
  90. McDonald, R. P. (1984b). Testing certain allometric hypotheses by “confirmatory factor analysis”. A private communication to the Fasrafarians. (Fasrafarians are members of the conference on functional and structural relations and factor analysis, Dundee, 1983.)Google Scholar
  91. McDonald, R. P. (1985a). The invariant factors model for multimode data. In H. G. Law., C. W. Snyder, J. A. Hattie & R. P. McDonald (Eds.),Multimode Data Analysis (pp. 285–307). New York: Praeger.Google Scholar
  92. McDonald, R. P. (1985b).Factor analysis and related methods. Hillsdale: NJ: Erlbaum.Google Scholar
  93. McDonald, R. P. (1985c). Comments on D. J. Bartholomew, Foundations of Factor analysis: Some practical implications.British Journal of Mathematical and Statistical Psychology, 38, 134–137.Google Scholar
  94. McDonald, R. P. (1985d, June). A study of a pathological case in factor analysis. Paper presented at Psychometric Society conference, Nashville.Google Scholar
  95. McDonald, R. P. (1985e, July). Heywood cases of the first and second kind. Paper read at Fourth European meeting of the Psychometric Society, Cambridge.Google Scholar
  96. McDonald, R. P. (1986). A survey of some studies in methods for the structural analysis of multivariate data in the social sciences.Interchange, 17, 25–40.CrossRefGoogle Scholar
  97. McDonald, R. P., & Ahlawat, K. (1974). Difficulty factors in binary data.British Journal of Mathematical and Statistical Psychology, 27, 82–99.Google Scholar
  98. McDonald, R. P., & Burr, E. J. (1967). A comparison of four methods of constructing factor scores.Psychometrika, 32, 381–401.Google Scholar
  99. McDonald, R. P., Ishizuka, T., & Nishisato, S. (1977, June). Weighting multicategory data to fit the common factor model. Paper presented at Psychometric Society Conference, Chapel Hill, NC.Google Scholar
  100. McDonald, R. P., & Krane, W. R. (1978). Scale-invariant estimators in common factor analysis and related models.British Journal of Mathematical and Statistical Psychology, 31, 218–228.Google Scholar
  101. McDonald, R. P., & Krane, W. R. (1979). A Monte Carlo study of local identifiability and degrees of freedom in the asymptotic likelihood ratio test.British Journal of Mathematical and Statistical Psychology, 32, 121–132.Google Scholar
  102. McDonald, R. P., & Mulaik, S. A. (1979). Determinacy of common factors: A non-technical review.Psychological Bulletin, 86, 297–306.Google Scholar
  103. McDonald, R. P., & Swaminathan, H. (1972).The structural analysis of dispersion matrices based on a very general model with a rapidly convergent procedure for the estimation of parameters. (An informal publication of the Department of Measurement and Evaluation, The Ontario Institute for Studies in Education, 216 pp.)Google Scholar
  104. McDonald, R. P., & Swaminathan, H. (1973). A simple matrix calculus with applications to multivariate analysis,General Systems, 18, 37–54.Google Scholar
  105. McDonald, R. P., Torii, Y., & Nishisato, S. (1979). Some results on proper eigenvalues and eigenvectors with applications to scaling.Psychometrika, 44, 211–227.CrossRefGoogle Scholar
  106. Miller, C. R., Sabagh, G., & Dingman, H. F. (1962). Latent class analysis and differential mortality.Journal of the American Statistical Association, 57, 430–438.Google Scholar
  107. Mooijart, A. (1982).Factor analysis for non-normal variables (Technical Report). Los Angeles: UCLA, Department of Psychology.Google Scholar
  108. Mooijart, A. (1985). Factor analysis for non-normal variables.Psychometrika, 50, 323–342.Google Scholar
  109. Mulaik, S. A. (1972).The foundations of factor analysis. New York: McGraw Hill.Google Scholar
  110. Mulaik, S. A., & McDonald, R. P. (1978). The effect of additional variables on factor indeterminacy.Psychometrika, 43, 177–192.CrossRefGoogle Scholar
  111. Muthén, B. (1978). Contributions to factor analysis of dichotomous variables.Psychometrika, 43, 551–560.CrossRefGoogle Scholar
  112. Nel, D. G. (1980). On matrix differentiation in statistics.South African Statistical Journal, 14, 137–193.Google Scholar
  113. Neudecker, H. (1969). Some theorems on matrix differentiation with special reference to Kronecker matrix products.Journal of the American Statistical Association, 64, 953–963.Google Scholar
  114. Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations.Econometrika, 16, 1–32.Google Scholar
  115. Novick, M. R., & Lewis, C. (1967). Coefficient alpha and the reliability of composite measurements.Psychometrika, 32, 1–13.CrossRefPubMedGoogle Scholar
  116. Roff, M. (1936). Some properties of the communalities in multiple factor theory.Psychometrika, 1(2), 1–6.CrossRefGoogle Scholar
  117. Schönemann, P. H. (1971). The minimum average correlation between equivalent sets of uncorrelated factors.Psychometrika, 36, 21–30.CrossRefGoogle Scholar
  118. Schönemann, P. H., & Wang, Ming-Mei. (1972). Some new results on factor indeterminacy.Psychometrika, 37, 61–91.Google Scholar
  119. Shapiro, A., & Browne, M. W. (1983). On the investigation of local identifiability: A counterexample.Psychometrika, 48, 303–304.CrossRefGoogle Scholar
  120. Swaminathan, H. (1976). Matrix calculus for functions of partitioned matrices.General Systems, 21, 95–99.Google Scholar
  121. Takane, Y., Young, F. W., & de Leeuw, J. (1979). Nonmetric common factor analysis: An alternating least squares method with optimal scaling features.Behaviormetrika, 6, 45–56.Google Scholar
  122. Tracey, D. S. & Dwyer, P. S. (1969). Multivariate maxima and minima with matrix derivatives.Journal of the American Statistical Association, 64, 1576–94.Google Scholar
  123. Trahan, M. (1974). An investigation of multicategory data factor analysis. Unpublished doctoral dissertation, University of Toronto.Google Scholar
  124. Van Driel, O. P. (1978). On various causes of improper solutions in maximum likelihood factor analysis.Psychometrika, 43, 225–243.CrossRefGoogle Scholar
  125. Whittle, P. (1952). On principal components and least square methods of factor analysis.Skandinavisk Aktuarie Tidskrift, 35, 223–239.Google Scholar
  126. Williams, J. S. (1978). A definition for the common-factor analysis model and the elimination of problems of factor score indeterminacy.Psychometrika, 43, 293–306.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 1986

Authors and Affiliations

  • Roderick P. McDonald
    • 1
  1. 1.Macquarie UniversityAustralia

Personalised recommendations