, Volume 63, Issue 1, pp 47–63 | Cite as

An item response model with internal restrictions on item difficulty



An IRT model based on the Rasch model is proposed for composite tasks, that is, tasks that are decomposed into subtasks of different kinds. There is one subtask for each component that is discerned in the composite tasks. A component is a generic kind of subtask of which the subtasks resulting from the decomposition are specific instantiations with respect to the particular composite tasks under study. The proposed model constrains the difficulties of the composite tasks to be linear combinations of the difficulties of the corresponding subtask items, which are estimated together with the weights used in the linear combinations, one weight for each kind of subtask. Although the model does not belong to the exponential family, its parameters can be estimated using conditional maximum likelihood estimation. The approach is demonstrated with an application to spelling tasks.

Key words

item response theory componential models linear restrictions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, E. B. (1980).Discrete statistical models with social science applications. Amsterdam: North-Holland.Google Scholar
  2. Baker, F. B. (1992).Item response theory: Parameter estimation techniques. New York: Marcel Dekker.Google Scholar
  3. Butter, R. P. (1994).Item response models with internal restrictions on item difficulty. Unpublished doctoral dissertation, Catholic University of Leuven, Belgium.Google Scholar
  4. Carpenter, A. C., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven progressive matrices test.Psychological Review, 97, 404–431.CrossRefPubMedGoogle Scholar
  5. De Boeck, P. (1991).Componential IRT models. Unpublished manuscript, University of Leuven, Belgium.Google Scholar
  6. Embretson, S. E. (1980). Multicomponent latent trait models for ability tests.Psychometrika, 45, 479–494.Google Scholar
  7. Embretson, S. E. (1984). A general latent trait model for response processes.Psychometrika, 49, 175–186.Google Scholar
  8. Embretson, S. E. (1985). Introduction to the problem of test design. In S. E. Embretson (Ed.),Test design: Developments in psychology and psychometrics (pp. 3–17). New York: Academic Press.Google Scholar
  9. Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research.Acta Psychologica, 37, 359–374.CrossRefGoogle Scholar
  10. Fischer, G. H. (1974).Einführung in die Theorie psychologischer Tests [Introduction to mental test theory]. Bern: Huber.Google Scholar
  11. Fischer, G. H. (1983). Logistic latent trait models with linear constraints.Psychometrika, 48, 3–26.Google Scholar
  12. Fischer, G. H., & Formann, A. K. (1982). Some applications of logistic latent trait models with linear constraints on the parameters.Applied Psychological Measurement, 6, 397–416.Google Scholar
  13. Fischer, G. H., & Kisser, R. (1983). Notes on the exponential latency model and an empirical application. In H. Wainer & S. Messick (Eds.),Principals of modern psychological measurement. A festschrift for Frederic M. Lord (pp. 322–336). Hillsdale, NJ: Erlbaum.Google Scholar
  14. Glas, C. A. W., & Verhelst, N. D. (1995). Testing the Rasch model. In G. H. Fischer & I. W. Molenaar,Rasch models: Their foundations, recent developments and applications (pp. 68–85). New York: Springer-Verlag.Google Scholar
  15. Gustafsson, (1980). Testing and obtaining fit of data to the Rasch model.British Journal of Mathematical and Statistical Psychology, 33, 205–233.Google Scholar
  16. Hays, W. L. (1988).Statistics (4th ed.). New York. Holt, Rinehart, & Winston.Google Scholar
  17. Hoskens, M., & De Boeck, P. (1995). Componential IRT models for polytomous items.Journal of Educational Measurement, 32, 364–384.CrossRefGoogle Scholar
  18. Janssen, R, & De Boeck, P. (1997). Psychometric modelling of componentially designed synonym tasks.Applied Psychological Measurement, 21, 37–50.Google Scholar
  19. Lohman, D. F. (1989). Human intelligence: An introduction to advances in theory and research.Review of Educational Research, 59, 333–373.Google Scholar
  20. Maris, E. (1995). Psychometric latent response models.Psychometrika, 60, 523–547.CrossRefGoogle Scholar
  21. Mislevy, R. J. (1989).Foundations of a new test theory (Research Report No. RR-89-52-ONR). Princeton, NJ: Educational Testing Service.Google Scholar
  22. Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis.Psychometrika, 40, 337–360.Google Scholar
  23. Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms.Journal of Mathematical Psychology, 19, 18–38.CrossRefGoogle Scholar
  24. Sternberg R. J. (1977).Intelligence, information processing, and analogical reasoning: The componential analysis of human abilities. Hillsdale, NJ: Erlbaum.Google Scholar
  25. Van der Geest, A., Swüste, W., & Raeven, J. (1978).Spellingwijzer [Spelling indicator] (Praxis-reeks, Deel 14). Den Bosch, The Netherlands: Malmberg.Google Scholar
  26. Verhelst, N. D., & Glas, C. A. W. (1995). The one parameter logistic model. In G. H. Fischer & I. W. Molenaar (Eds.),Rasch models: Their foundations, recent development, and applications. New York: Springer.Google Scholar
  27. Verhelst, N. D., Glas, C. A. W., & Verstralen, H. H. F. M. (1995).One-parameter logistic model [Software Manual]. Arnhem: Cito.Google Scholar

Copyright information

© The Psychometric Society 1998

Authors and Affiliations

  1. 1.University of LeuvenLeuvenBelgium
  2. 2.CitoArnhemThe Netherlands

Personalised recommendations