Advertisement

Psychometrika

, Volume 55, Issue 2, pp 337–352 | Cite as

The robustness of estimates of total indirect effects in covariance structure models estimated by maximum

  • Clement A. Stone
  • Michael E. Sobel
Article

Abstract

The large sample distribution of total indirect effects in covariance structure models in well known. Using Monte Carlo methods, this study examines the applicability of the large sample theory to maximum likelihood estimates oftotal indirect effects in sample sizes of 50, 100, 200, 400, and 800. Two models are studied. Model 1 is a recursive model with observable variables and Model 2 is a nonrecursive model with latent variables. For the large sample theory to apply, the results suggest that sample szes of 200 or more and 400 or more are required for models such as Model 1 and Model 2, respectively.

Key words

indirect effects covariance structure analysis Monte Carol methods delta method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis.American Sociological Review, 40, 37–47.Google Scholar
  2. Anderson, T. W. (1984).An introduction to multivariate statistical analysis (2nd ed.). New York: Wiley.Google Scholar
  3. Anderson, J. C., & Gerbing, D. M. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis.Psychometrika, 49, 155–173.Google Scholar
  4. Bentler, P. M. (1986). Structural equation modeling and Psychometrika: An historical perspective on growth and achievements.Psychometrika, 51, 35–51.Google Scholar
  5. Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables,Psychometrika, 45, 289–308.Google Scholar
  6. Bollen, K. (1987). Total, direct, and indirect effects in structural equation models. In C. C. Clogg (Ed.),Sociological Methodology (pp. 37–69). San Francisco: Jossey-Bass.Google Scholar
  7. Boomsma, A. (1982). The robustness of LISREL against small sample sizes in factor analysis models. IN K. G. Jöreskog and H. Wold (Eds.),Systems under indirect observation: Causality, structure, prediction (Part 1) (pp. 149–173). Amsterdam: North-Holland.Google Scholar
  8. Boomsma, A. (1983).On the robustness of LISREL (maximum likelihood estimation) against small sample size and non-normality. Unpublished doctoral dissertation, University of Groningen, Groningen.Google Scholar
  9. Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation.Psychometrika, 50, 229–242.Google Scholar
  10. Boomsma, A. (1986). On the use of bootstrap and jackknife in covariance analysis.Compstat: Proceedings of the International Association for Statistical Computing. Heidelberg: Physica-Verlag.Google Scholar
  11. Box, G. E. P., & Muller, M. E. (1958). A note on the generation of random normal deviates.The Annals of Mathematical Statistics, 29, 610–611.Google Scholar
  12. Browne, M. W. (1968). A comparison of factor analytic techniques.Psychometrika, 33, 267–334.Google Scholar
  13. Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures.South African Statistical Journal, 8, 1–24.Google Scholar
  14. Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.Google Scholar
  15. Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 37, 62–38.Google Scholar
  16. Duncan, O. D. (1970). Douncan's corrections of published text of “Peer influences on aspirations: A reinterpretation”.American Journal of Sociology, 76, 1042–1046.Google Scholar
  17. Duncan, O. D. (1975).Introduction to structural equation models. New York: Academic Press.Google Scholar
  18. Duncan, O. D., Featherman, D. L., & Duncan, B. (1972).Socioeconomic background and achievement. New York: Seminar Press.Google Scholar
  19. Duncan, O. D., Haller, A. O., & Portes, A. (1968). Peer influences on aspirations: A reinterpretation.American Journal of Sociology, 74, 119–137.Google Scholar
  20. Efron, B. (1979). Bootstrap methods: Another look at the jackknife.The Annals of Statistics, 7, 1–26.Google Scholar
  21. Folmer, N. (1981). Measurement of the effects of regional policy instruments by means of linear structural equation models and panel data.Environment and Planning, 13, 1435–1448.Google Scholar
  22. Fox, J. (1984).Linear statistical models and related methods with applications. New York: Wiley.Google Scholar
  23. Fox, J. (1985). Effect analysis in structural equation models: Calculation of specific indirect effects.Sociological Methods and Research, 14, 81–95.Google Scholar
  24. Freeman, E. H. (1982).The implementation of effect decomposition methods for two general structural covariance modeling systems. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  25. Gerbing, D. W., & Anderson, J. C. (1987). Improper solutions in the analysis of covariance structures: Their interpretability and a comparison of alternate respecifications.Psychometrika, 52, 99–112.Google Scholar
  26. Graff, J., & Schmidt, P. (1982). A general model for decomposition of effects. In K. G. Jöreskog and H. Wold (Eds.),Systems under indirect observation, Part I (pp. 131–148). Amsterdam: North Holland.Google Scholar
  27. Harlow, L. L. (1985).Behavior of some elliptical theory estimators with nonnormal data in a covariance structures framework: A Monte Carlo study. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
  28. Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling.Journal of Marketing Research, 19, 404–416.Google Scholar
  29. Jöreskog, K. G., & Sörbom, D. (1986).LISREL VI: Analysis of linear structural relationships by maximum likelihood and least square methods. Chicago, IL: International Educational Services.Google Scholar
  30. Law, A. W., & Kelton, W. D. (1982).Simulation modeling and analysis. New York: McGraw Hill.Google Scholar
  31. McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 31, 59–72.Google Scholar
  32. Mosteller, F., & Tukey, J. W. (1968). Data analysis, including statistics. In G. Lindzey & E. Aronson (Eds.),Revised handbook of social psychology (Chapter 10). Reading, MA: Addison-Wesley.Google Scholar
  33. Odell, P. L., & Feiveson, A. H. (1966). A numerical procedure to generate a sample covariance matrix.Journal of the American Statistical Association, 61, 199–203.Google Scholar
  34. Quenouille, M. H. (1956). Notes on bias in estimation.Biometrika, 48, 433–440.Google Scholar
  35. Rao, C. R. (1973).Linear statistical inference and its applications (2nd ed.). New York: Wiley.Google Scholar
  36. Schrage, L. (1979). A more portable random number generator.ACM Transaction Software, 5, 132–138.Google Scholar
  37. Smith, W. B., & Hocking, R. R. (1972). Wishart variate generator. Algorithm AS53.Applied Statistics, 21, 341–345.Google Scholar
  38. Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. In S. Leinhardt (Ed.),Sociological methodology (pp. 290–313). San Francisco: Jossey-Bass.Google Scholar
  39. Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. In N. B. Tuma (Ed.),Sociological methodology (pp. 159–186). San Francisco: Jossey-Bass.Google Scholar
  40. Sobel, M. E. (1987). Direct and indirect effects in linear structural equation models.Sociological Methods and Research, 16, 155–176.Google Scholar
  41. Stone, C. A. (1985). CINDESE: Computing indirect effects and their standard errors.Educational and Psychological Measurement, 45, 601–606.Google Scholar
  42. Stone, C. A. (1987).The robustness of indirect effects estimated in the Jöreskog-Keesling-Wiley covariance structure model. Unpublished doctoral dissertation, University of Arizona, Tuscon.Google Scholar
  43. Swain, A. J. (1975). A class of factor analytic estimation procedures with common asymptotic sampling properties.Psychometrika, 40, 315–335.Google Scholar
  44. Tanaka, J. S., & Bentler, P. M. (1985). Quasi-likelihood estimation in asymptotically efficient covariance structure models.1984 Proceedings of the American Statistical Association, Social Statistics Section, 658–662.Google Scholar
  45. Zehna, P. W. (1966). Invariance of maximum likelihood estimation.The Annals of Mathematical Statistics, 37, 755.Google Scholar

Copyright information

© The Psychometric Society 1990

Authors and Affiliations

  • Clement A. Stone
    • 1
  • Michael E. Sobel
    • 2
  1. 1.University of Pittsburgh
  2. 2.University of ArizonaUSA

Personalised recommendations