Psychometrika

, Volume 62, Issue 2, pp 171–189 | Cite as

A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks

  • Herbert Hojtink
  • Ivo W. Molenaar
Article

Abstract

In this paper it will be shown that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. The parameters of this latent class model will be estimated using an application of the Gibbs sampler. It will be illustrated that the Gibbs sampler is an excellent tool if inequality constraints have to be taken into consideration when making inferences. Model fit will be investigated using posterior predictive checks. Checks for manifest monotonicity, the agreement between the observed and expected conditional association structure, marginal local homogeneity, and the number of latent classes will be presented.

Key words

Gibbs sampler posterior predictive checks nonparametric item response theory multidimensional manifest monotonicity local homogeneity conditional association 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling.Journal of Educational Statistics, 17, 251–269.Google Scholar
  2. Casella, G., & George, E. (1992). Explaining the Gibbs sampler.American Statistican, 46, 167–174.Google Scholar
  3. Croon, M. A. (1990). Latent class analysis with ordered latent classes.British Journal of Mathematical and Statistical Psychology, 43, 171–192.Google Scholar
  4. Croon, M. A. (1991). Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis.British Journal of Mathematical and Statistical Psychology, 44, 315–331.Google Scholar
  5. Ellis, J. L., & van den Wollenberg, A. L. (1993). Local homogeneity in latent trait models. A characterization of the homogeneous monotone IRT model.Psychometrika, 58, 417–429.CrossRefGoogle Scholar
  6. Gelfand, A. E., Hills, S. E., Racine-Poon, A., & Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling.Journal of the American Statistical Association, 85, 972–985.Google Scholar
  7. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.Journal of the American Statistical Association, 85, 398–409.Google Scholar
  8. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995).Bayesian Data Analysis. London: Chapman and Hall.Google Scholar
  9. Gelman, A., Meng, X., & Stern, H. S. (in press). Posterior predictive assessment of model fitness via realized discrepancies (with discussion).Statistica Sinica. to appear.Google Scholar
  10. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences.Statistical Science, 7, 457–511.Google Scholar
  11. Grayson, D. A. (1988). Two-group classification in latent trait theory: scores with monotone likelihood ratio.Psychometrika, 53, 383–392.CrossRefGoogle Scholar
  12. Holland, P. W. (1981). When are item response models consistent with observed data.Psychometrika, 46, 79–92.CrossRefGoogle Scholar
  13. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent variable models.The Annals of Statistics, 14, 1523–1543.Google Scholar
  14. Holm, S. (1979). A simple sequentially rejective multiple test procedure.Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  15. Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items.Psychometrika, 56, 255–278.CrossRefGoogle Scholar
  16. Junker, B. W. (1993). Conditional association, essential independence and monotone unidimensional item response models.The Annals of Statistics, 3, 1359–1378.Google Scholar
  17. Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis.Journal of the American Statistical Association, 86, 96–107.Google Scholar
  18. Lord, F. M., & Novick, M. R. (1968).Statistical theory of mental test scores. London: Addison-Wesley.Google Scholar
  19. MacEachern, S. N., & Berliner, L. M. (1994). Subsampling the Gibbs sampler.The American Statistician, 48, 188–190.Google Scholar
  20. Meng, X. L. (1994). Posterior Predictivep-Values.The Annals of Statistics, 22, 1142–1160.Google Scholar
  21. Mokken, R. J. (1971).A theory and procedure of scale analysis. The Hague/Berlin: Mouton/DeGruyler.Google Scholar
  22. Mokken, R. J., and, Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses.Applied Psychological Measurement, 6, 417–430.Google Scholar
  23. Molenaar, I. W. (1996). Nonparametric models for polytomous responses. In W. J. van der Linden, & R. K. Hambleton (Eds.),Handbook of Modern Item Response Theory (pp. 361–372). New York: Springer.Google Scholar
  24. Molenaar, I. W., Debets, P., Sijtsma, K., & Hemker, B. T. (1994).User's Manual MSP. Groningen: IecProgamma.Google Scholar
  25. NAG (1992). Foundation library. Oxford: The Numerical Algorithms Group.Google Scholar
  26. Narayanan, A. (1990). Computer generation of Dirichlet random vectors.Journal of Statistical Computations and Simulations, 36, 19–30.Google Scholar
  27. Ripley, B. D. (1987).Stochastic Simulation. New York: Wiley.Google Scholar
  28. Rosenbaum, P. R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory.Psychometrika, 49, 425–435.Google Scholar
  29. Rubin, D. B. (1984). Bayesian justifiable and relevant frequency calculations for the applied statistician.The Annals of Statistics, 12, 1151–1172.Google Scholar
  30. Rubin, D. B., & Stern, H. L. (1993). Testing in latent class models using a posterior predictive check distribution. In A. von Eye & C. Clogg (Eds.),Latent variables Analysis. Applications for Developmental Research. London: SAGE.Google Scholar
  31. Sanders, K, & Hoijtink, H. (1992). Androgynie bestaat (Persons who are both psychologically masculine and feminine exist).Nederlands Tijdschrift voor de Psychologie, 47, 123–133.Google Scholar
  32. Shaffer, J. P. (1994). Multiple hypothesis testing: A review. (Tech. Rep. No. 23). Research Triangle Park, NC: National Institute of Statistical Sciences.Google Scholar
  33. Shealy, R., & Stout, W. (1993). A model based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF.Psychometrika, 58, 159–194.CrossRefGoogle Scholar
  34. Sijtsma, K., & Molenaar, I. W. (1987). Reliability of test scores in nonparametric item response theory.Psychometrika, 52, 79–97.CrossRefGoogle Scholar
  35. Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods.Journal of the Royal Statistical Society, Series B, 55, 2–23.Google Scholar
  36. Stout, W. (1987). A nonparametric approach for assessing the latent trait dimensionality.Psychometrika, 52, 589–618.CrossRefGoogle Scholar
  37. Stout, W. F. (1990). A new item response theory modelling approach with applications to unidimensionality assessment and ability estimation.Psychometrika, 55, 293–326.Google Scholar
  38. Tanner, M. A. (1993).Tools for statistical inference, methods for the explorations of posterior distributions and likelihood functions. New York: Springer.Google Scholar
  39. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion).Annals of Statistics, 22, 1701–1762.Google Scholar
  40. Thissen, D., Steinberg, L., & Wainer, H. (1988). Use of item response theory in the study of group differences in trace lines. In H. Wainer, & H. I. Braun (Eds.).Test validity (pp. 147–169). Hillsdale, NJ: Erlbaum.Google Scholar
  41. Zeger, S. L., and Karim, M. R. (1991). Generalized linear models with random effect; a Gibbs sampling approach.Journal of the American statistical association, 86, 79–86.Google Scholar
  42. Zellner, A., & Min, C. (1995). Gibbs sampler convergence criteria.Journal of the American Statistical Association, 90, 921–927.Google Scholar

Copyright information

© The Psychometric Society 1997

Authors and Affiliations

  • Herbert Hojtink
    • 1
  • Ivo W. Molenaar
    • 1
  1. 1.Department of Statistics and Measurement TheoryUniversity of GroningenThe Netherlands

Personalised recommendations