Advertisement

Psychometrika

, Volume 55, Issue 1, pp 151–158 | Cite as

A generalization of Takane's algorithm for dedicom

  • Henk A. L. Kiers
  • Jos M. F. ten Berge
  • Yoshio Takane
  • Jan de Leeuw
Article

Abstract

An algorithm is described for fitting the DEDICOM model for the analysis of asymmetric data matrices. This algorithm generalizes an algorithm suggested by Takane in that it uses a damping parameter in the iterative process. Takane's algorithm does not always converge monotonically. Based on the generalized algorithm, a modification of Takane's algorithm is suggested such that this modified algorithm converges monotonically. It is suggested to choose as starting configurations for the algorithm those configurations that yield closed-form solutions in some special cases. Finally, a sufficient condition is described for monotonic convergence of Takane's original algorithm.

Key words

DEDICOM least squares fitting majorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Leeuw, J. (1983).Notes on DEDICOM. Unpublished manuscript.Google Scholar
  2. de Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.),Multivariate analysis V (pp. 501–522). Amsterdam: North-Holland.Google Scholar
  3. Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.Psychometrika, 1, 211–218.Google Scholar
  4. Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J. Barra et al. (Eds.)Recent Developments in Statistics (pp. 109–123). Amsterdam: North-Holland.Google Scholar
  5. Green, B. F. (1969). Best linear composites with a specified structure.Psychometrika, 34, 301–318.Google Scholar
  6. Harshman, R. A. (1978, August).Models for analysis of asymmetrical relationships among N objects or stimuli. Paper presented at the First Joint Meeting of the Psychometric Society and the Society for Mathematical Psychology, Hamilton, Ontario.Google Scholar
  7. Harshman, R. A. (1981).DEDICOM multidimensional analysis of skew-symmetric data. Part 1. Theory. Unpublished technical memorandum, Bell Laboratories, Murray Hill, NJ.Google Scholar
  8. Harshman, R. A., Green, P. E., Wind, Y., & Lundy, M. E. (1982). A model for the analysis of asymmetric data in marketing research.Marketing Science, 1, 205–242.Google Scholar
  9. Harshman, R. A., & Kiers, H. A. L. (1987, June).Algorithms for DEDICOM analysis of asymmetric data. Paper presented at the European Meeting of the Psychometric Society, Enschede.Google Scholar
  10. Kiers, H. A. L. (1989). An alternating least squares algorithm for fitting the two- and three-way DEDICOM model and the IDIOSCAL model.Psychometrika, 54, 515–521.Google Scholar
  11. Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis.Psychometrika, 40, 337–360.Google Scholar
  12. Takane, Y. (1985). Diagonal Estimation in DEDICOM.Proceedings of the 1985 Annual Meeting of the Behaviormetric Society (pp. 100–101). Sapporo.Google Scholar
  13. ten Berge, J. M. F. (1983). A generalization of Kristof's theorem on the trace of certain matrix products.Psychometrika, 48, 519–523.Google Scholar

Copyright information

© The Psychometric Society 1990

Authors and Affiliations

  • Henk A. L. Kiers
    • 1
  • Jos M. F. ten Berge
    • 1
  • Yoshio Takane
    • 2
  • Jan de Leeuw
    • 3
  1. 1.University of GroningenThe Netherlands
  2. 2.Mcgill UniversityCanada
  3. 3.University of CaliforniaLos Angeles

Personalised recommendations