Psychometrika

, Volume 67, Issue 1, pp 123–136 | Cite as

Equivalent linear logistic test models

  • Timo M. Bechger
  • Huub H. F. M. Verstralen
  • Norman D. Verhelst
Articles

Abstract

This paper is about the Linear Logistic Test Model (LLTM). We demonstrate that there are infinitely many equivalent ways to specify a model. An implication is that there may well be many ways to change the specification of a given LLTM and achieve the same improvement in model fit. To illustrate this phenomenon, we analyze a real data set using a Lagrange multiplier test for the specification of the model. This Lagrange multiplier test is similar to the modification index used in structural equation modeling.

Key words

item response theory (IRT) linear logistic test model Lagrange multiplier test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, W., & Silvey, S.D. (1958). Maximum likelihood estimation of parameters subject to restraints.Annals of Mathematical Statistics, 28, 813–828.Google Scholar
  2. Azzalini, A. (1996).Statistical inference based on the likelihood. London, U.K.: Chapman and Hall.Google Scholar
  3. Baumert, J., Heyn. S., Köller, O., & Lehrke, M. (1992).Naturwissenschaftliche und psychosoziale Bildungsprozesse im Jugendalter (BIJU)—Testdokumantation [Scientific and psychosocial developmental processes in young children]. Kiel, Germany: IPN.Google Scholar
  4. Bechger, T.M., Verhelst, N.D., & Verstralen, H.F.M. (2001). Identifiability of nonlinear logistic test models.Psychometrika, 66, 357–372.Google Scholar
  5. Bekker, P.A., Merckens, A., & Wansbeek, T.J. (1994).Identification, equivalent models, and computer algebra. Boston, MA: Academic Press.Google Scholar
  6. Bollen, K.A. (1909).Structural equations with latent variables. New York, NY: Wiley.Google Scholar
  7. Buse, A. (1982). The likelihood ratio, Wald and Lagrange multiplier test: An expository note.The American Statistician, 36(3), 153–157.Google Scholar
  8. Butter, R.P., De Boeck, P., & Verhelst, N.D. (1998). An item response model with internal restrictions on item difficulty.Psychometrika, 63, 47–63.Google Scholar
  9. Fischer, G.H. (1974).Einfurung in die Theorie psychologischer Tests: Grundlagen und Anwendungen [Introduction to the theory of psychological tests: Foundations and applications]. Bern, Switzerland: Verlag Hans Huber.Google Scholar
  10. Fischer, G.H. (1995). The linear logistic test model. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models: Foundations, recent developments and applications (pp. 131–155). Berlin, Germany: Springer.Google Scholar
  11. Fisher, F.M. (1966).The identification problem in econometrics. New York, NY: McGraw-Hill.Google Scholar
  12. Glas, C.A.W., & Verhelst, N.D. (1995). Testing the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models: Their foundations, recent developments and applications (pp. 69–95). New York, NY: Springer Verlag.Google Scholar
  13. Green, S.B., Marquis, J.G., Hersberger, S.L., Thompson, M.S., & McCollam, K.M. (1999). The overparameterized analysis of variance Model.Psychological Methods, 4, 214–233.Google Scholar
  14. Lang, S. (1987).Linear algebra (3rd ed.). New York, NY: Springer Verlag.Google Scholar
  15. Luijben, T.C.W. (1989).Statistical guidance for model modification in covariance structure analysis. Unpublished doctoral dissertation, Sociometric Research Foundation, Amsterdam.Google Scholar
  16. Luijben, T.C.W. (1991). Equivalent models in covariance structure analysis.Psychometrika, 56, 653–665.Google Scholar
  17. MacCallum, R. (1986). Specification searches in covariance structure modeling.Psychological Bulletin, 100, 107–120.Google Scholar
  18. Penrose, R. (1955). A generalized inverse for matrices.Proceedings of the Cambridge Philosophical Society, 62, 673–677.Google Scholar
  19. Pringle, R.M., & Rayner, A.A. (1971).Generalized inverse matrices with applications to Statistics. London, U.K.: Charles Griffin.Google Scholar
  20. Rao, C.R. (1947). Large sample tests of statistical hypothesis concerning several parameters with applications to the problems of estimation.Proceedings of the Cambridge Philosophical Society, 44, 50–57.Google Scholar
  21. Rost, J. (1996).Testtheory, Testkonstruction [Test theory, test construction]. Bern, Germany: Verlag Hans Huber.Google Scholar
  22. Saris, W.E., Satorra, A., & Sörbom, D. (1987). The detection and correction of specification errors in structural equation models. In C.C. Glogg (Ed.),Sociological Methodology 1987 (pp. 105–129). San Fransisco, CA: Jossey-Bass.Google Scholar
  23. Shapiro, A. (1983).On local identifiability in structural models. Unpublished research report, University of South Africa, Department of Mathematics and Applied Mathematics.Google Scholar
  24. Silvey, S.D. (1959). The Lagrange multiplier test.Annals of Mathematical Statistics, 30, 398–407.Google Scholar
  25. Sörbom, D. (1989). Model modification.Psychometrika, 54, 371–384.Google Scholar
  26. Sternberg, R.J. (Ed.). (1985).Human abilities: An information-processing approach. New York, NY: W.H. Freeman.Google Scholar
  27. Tsai, R.-C. (2000). Remarks on the identifiability of Thurstonian ranking models: Case V, Case III, or neither?Psychometrika, 65, 233–240.Google Scholar
  28. Verhelst, N.D. (1993).On the standard errors of parameter estimators in the Rasch model. (Measurement and Research department Reports, 93-1). Arnhem, Netherlands: Cito.Google Scholar
  29. Volodin, N.A., & Adams, R.J. (1995, April).Identifying and estimating a D-dimensional item response model. Paper presented at the International Objective Measurement Workshop, University of California, Berkeley, California.Google Scholar
  30. Whitely, S.E., & Schneider, L.M. (1981). Information structure of geometric analogies: A test theoretic approach.Applied Psychological Measurement, 5, 383–397.Google Scholar

Copyright information

© The Psychometric Society 2002

Authors and Affiliations

  • Timo M. Bechger
    • 1
  • Huub H. F. M. Verstralen
    • 1
  • Norman D. Verhelst
    • 1
  1. 1.Cito, National Institute for Educational MeasurementThe Netherlands

Personalised recommendations