Advertisement

Psychometrika

, Volume 55, Issue 4, pp 641–656 | Cite as

A latent trait model for dichotomous choice data

  • Herbert Hoijtink
Article

Abstract

The PARELLA model is a probabilistic parallelogram model that can be used for the measurement of latent attitudes or latent preferences. The data analyzed are the dichotomous responses of persons to stimuli, with a one (zero) indicating agreement (disagreement) with the content of the stimulus. The model provides a unidimensional representation of persons and items. The response probabilities are a function of the distance between person and stimulus: the smaller the distance, the larger the probability that a person will agree with the content of the stimulus. An estimation procedure based on expectation maximization and marginal maximum likelihood is developed and the quality of the resulting parameter estimates evaluated.

Key words

marginal maximum likelihood expectation maximization nonmonotone trace lines single-peaked preference functions latent trait theory unfolding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E. B. (1970). Asymptoticl proerties of conditional maximum likelihood estimators.Journal of the Royal Statistical Society, Series B, 32, 283–301.Google Scholar
  2. Andersen, E. B., & Madsen, M. (1977). Estimating the parmeters of the latent population distribution.Psychometrika, 42, 357–374.Google Scholar
  3. Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude.Applied Psychological Measurement, 12, 33–51.Google Scholar
  4. Bock, R. D. (1988).BILOG. Chicago: Scientific Software.Google Scholar
  5. Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: application of an EM algorithm.Psychometrika, 46, 443–459.Google Scholar
  6. Bock, R. D., & Lieberman, M. (1970). Fitting a response model forn dichotomously scored items.Psychometrika, 35, 179–197.Google Scholar
  7. Cliff, N., Collins, L. M., Zatkin, J., Gallipeau, D., & McCormick, D. J. (1988). An ordinal scaling method for questionnaire and other ordinal data.Applied Psychological Measurement, 12, 83–97.Google Scholar
  8. Coombs, C. H. (1964).A theory of data. Ann Arbor: Mathesis Press.Google Scholar
  9. Davison, M. L. (1977). On a metric unidimensional unfolding model for attitudinal and developmental data.Psychometrika, 42, 523–548.Google Scholar
  10. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–38.Google Scholar
  11. DeSarbo, W. S., & Hoffman, D. L. (1986). Simple and weighted unfolding threshold models for the spatial representation of binary choice data.Applied Psychological Measurement, 10, 247–264.Google Scholar
  12. Engelen, R. J. H. (1987).Semiparametric estimation in the Rasch model (Research Report 87-1). Twente, The Netherlands: University of Twente.Google Scholar
  13. Fischer, G. H. (1987).Einfuhrung in die theorie psychologischer Tests: Grundlagen and Anwendungen [Introduction to the theory of psychological test: Fundamentals and applications]. Bern: Huber.Google Scholar
  14. fischer, G. H. (1974). Applying the principles of specific objectivity and of generalizability to the measurement of change.Psychometrika, 52, 565–587.Google Scholar
  15. Glas, C. A. W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution.Psychometrika, 52, 525–546.Google Scholar
  16. Haberman, S. J. (1977). Maximum likelihood estimation in exponential response models.The Annals of Statistics, 5, 815–841.Google Scholar
  17. Hartley, H. O. (1958). Maximum likelihood estimation from incomplete data.Biometrics, 14, 174–194.Google Scholar
  18. Hartley, H. O., & Hocking, R. R. (1971). The analysis of incomplete data.Biometrics, 27, 783–808.Google Scholar
  19. Hoijtink, H. (1990).PARELLA, measurement of latent traits by poximity items. Leiden: DSWO Press.Google Scholar
  20. Jansen, P. G. W. (1983).Rasch analysis of attitudinal data. Doctoral dissertation, State Psychological Service, Catholic University of Nymegen, The Netherlands.Google Scholar
  21. Kennedy, Jr., W. J., & Gentle, J. E. (1980).Statistical computing. New York: Dekker.Google Scholar
  22. Kiewiet, D. J. (1988).Een programma voor de schatting van persoons-parameters in het PPPA-model [A program for the estimation of person parameters in the PARELLA model] (HB-88-937-SW). Heymans Bulletins Psychologische Instituten R. U. Groningen.Google Scholar
  23. Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution.Journal of the American Statistical Association, 73, 805–811.Google Scholar
  24. Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm.Journal of the Royal Statistical Society, Series B, 44, 226, 233.Google Scholar
  25. Mislevy, R. J., & Bock, R. D. (1982). Biweight estimates of latent ability.Journal of Educational and Psychological Measurement, 42, 725–737.Google Scholar
  26. Mokken, R. J. (1970).A theory and procedure of scale analysis. 'S-Gravenhage: Mouton.Google Scholar
  27. Molenaar, I. W. (1983). Some improved diagnostics for failure of the Rasch Model.Psychometrika, 48, 49–57.Google Scholar
  28. Molenaar, I. W., & Hoijtink, H. (1990). The many null distributions of person fit indices.Psychometrika, 55, 75–105.Google Scholar
  29. Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis.Psychometrika, 40, 337–360.Google Scholar
  30. Rapoport, R. B., Abramowitz, A. I., & McGlennon, J. (1986).The life of the parties. Lexington: The University Press of Kentucky.Google Scholar
  31. Sanathana, L., & Blumenthal, S. (1978). The logistic model and estimation of latent structure.Journal of the American Statistical Association, 73, 794–799.Google Scholar
  32. Stroud, A. H., & Sechrest, D. (1966).Gaussian quadrature formulas. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  33. Takane, Y. (1983). Choice model analysis of the pick any/n type of binary data. Handout for the talk given at the European Psychometric and Classification Meeting, Jouy-en-Josas, France.Google Scholar
  34. Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model.Psychometrika, 47, 175–186.Google Scholar
  35. van den Wollenberg, A. L. (1982). Two new test statistics for the Rasch model.Psychometrika, 47, 123–140.Google Scholar
  36. van Schuur, W. H. (1984).Structure in political beliefs. Amsterdam: CT Press.Google Scholar
  37. Wainer, H., & Wright, B. D. (1980). Robust estimation of ability in the Rasch model.Psychometrika, 45, 373–391.Google Scholar
  38. Wright, B. D., & Douglas, G. A. (1977). Best procedures for sample free item analysis.Applied Psychological Measurement, 1, 281–294.Google Scholar

Copyright information

© The Psychometric Society 1990

Authors and Affiliations

  • Herbert Hoijtink
    • 1
  1. 1.Department of Statistics and Measurement TheoryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations