Advertisement

Psychometrika

, Volume 62, Issue 3, pp 393–409 | Cite as

Rasch's model for reading speed with manifest explanatory variables

  • Margo G. H. Jansen
Article

Abstract

In educational and psychological measurement we find the distinction between speed and power tests. Although most tests are partially speeded, the speed element is usually neglected. Here we consider a latent trait model developed by Rasch for the response time on a (set of) pure speed test(s), which is based on the assumption that the test response times are approximately gamma distributed, with known shape parameters and scale parameters depending on subject “ability” and test “difficulty” parameters. In our approach the subject parameters are treated as random variables having a common gamma distribution. From this, maximum marginal likelihood estimators are derived for the test difficulties and the parameters of the latent subject distribution. This basic model can be extended in a number of ways. Explanatory variables for the latent subject parameters and for the test parameters can be incorporated in the model. Our methods are illustrated by the analysis of a simulated and an empirical data set.

Key words

reading speed tests Rasch model explanatory variables 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. & Stegun, I. A. (1964).Handbook of mathematical functions. Washington, DC, National Bureau of Standards.Google Scholar
  2. Aitkin, M., Anderson, D., Francis, B. & Hinde, J. (1990).Statistical modelling in GLIM. Oxford: Oxford University Press.Google Scholar
  3. Andersen, E. B., & Madsen, M. (1977). Estimating the parameters of the latent population distribution.Psychometrika, 42, 357–374.Google Scholar
  4. Bruning, H. A., Wekking, E. M., & Dingemans, P. M. A. J. (1995). The Stroop Colour-Word Test: Paper versus Computerized Administration? (in Dutch).Psychologie & Computers, 12, 3–11.Google Scholar
  5. Fischer, G. H., & Kisser, R. (1981). Notes on the exponential latency model and an empirical application. In H. Wainer & S. Messick (Eds.),Principles of modern psychological measurement. Hillsdale, NJ: Erlbaum.Google Scholar
  6. Jansen, M. G. H. (in press). The Rasch Model for Speed Tests and Some Extensions with Applications to Incomplete Designs.Journal of Educational and Behavioral Statistics (accepted for publication).Google Scholar
  7. Johnson, N. L. & Kotz, S. (1970).Distributions in statistics. Continuous univariate distributions-1. Boston: Houghton-Mifflin.Google Scholar
  8. Lord, F. M., & Novick, M. R. (1968).Statistical theories of mental test scores. Reading, MA: Addison Wesley.Google Scholar
  9. Maris, E. (1993). Additive and multiplicative models for gamma distributed random variables, and their application as psychometric models for response times.Psychometrika, 58, 445–469.Google Scholar
  10. Mosimann, J. E. (1962). On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions.Biometrika, 49, 65–82.Google Scholar
  11. Rasch, G. (1960/1980).Probabilistic models for some intelligence and attainment test. Chicago, IL: The University of Chicago Press.Google Scholar
  12. Roskam, E. E. (1987). Towards a psychometric theory of intelligence. In E. E. Roskam & R. Suck (Eds.).Progress in mathematical psychology, (Vol. 1) (pp. 151–174). Amsterdam, North Holland: Elsevier Science Publishers.Google Scholar
  13. Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms.Journal of Mathematical Psychology, 19, 18–38.Google Scholar
  14. Scheiblechner, H. (1985). Psychometric models for speed-test construction: the linear exponential model. In S. E. Embretson (Ed.),Test design, developments in psychology and psychometrics. London, Academic Press.Google Scholar
  15. Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model.Psychometrika, 47, 175–186.Google Scholar
  16. Thissen, D. (1983). Timed testing: an approach using item response theory. In D. J. Weiss (Ed.),New horizons in testing: Latent trait theory and computerized adaptive testing (pp. 179–203). New York, Academic Press.Google Scholar
  17. van Breukelen, G. J. P. (1995). Psychometric and information processing properties of selected response time models.Psychometrika, 60, 95–113.Google Scholar
  18. van Duijn, M. A. J., & Jansen, M. G. H. (1995). Modeling repeated count data with extensions of Rasch's Poisson counts model.Journal of Educational and Behavioral Statistics, 20, 241–258.Google Scholar
  19. Verhelst, N., Verstralen, H., & Jansen, M. G. H. (1996). Models for time-limit tests. In W. J. van der Linden & R. Hambleton,Handbook of modern item response theory. New York, Springer Verlag.Google Scholar
  20. White, P. O. (1973). Individual differences in speed, accuracy and persistence. In: H. J. Eysenck (Ed.),The measurement of intelligence. Baltimore, MD: Williams & Wilkins.Google Scholar
  21. Zwinderman, A. H. (1991). A generalized Rasch model for manifest predictors.Psychometrika, 56, 589–600.Google Scholar

Copyright information

© The Psychometric Society 1997

Authors and Affiliations

  • Margo G. H. Jansen
    • 1
  1. 1.University of GroningeneThe Netherland

Personalised recommendations