Analysis of asymmetry by a slide-vector

Abstract

The slide-vector scaling model attempts to account for the asymmetry of a proximity matrix by a uniform shift in a fixed direction imposed on a symmetric Euclidean representation of the scaled objects. Although no method for fitting the slide-vector model seems available in the literature, the model can be viewed as a constrained version of the unfolding model, which does suggest one possible algorithm. The slide-vector model is generalized to handle three-way data, and two examples from market structure analysis are presented.

This is a preview of subscription content, log in to check access.

References

  1. Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences (pp. 105–155). New York: Seminar Press.

    Google Scholar 

  2. Carroll, J. D. (1981). Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In E. D. Lantermann & H. Feger (Eds.),Similarity and choice (pp. 234–289). Bern: Huber.

    Google Scholar 

  3. Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via anN-way generalization of “Eckart-Young” decomposition.Psychometrika, 35, 283–319.

    Google Scholar 

  4. Carroll, J. D., & Wish, M. (1974). Multidimensional perceptual models and measurement methods. In E. C. Carterette & M. P. Friedman (Eds.),Handbook of perception (pp. 391–447). New York: Academic Press.

    Google Scholar 

  5. Caussinus, H. (1965). Contribution a l'analyse statstique des tableaux de correlation. [Contributions to the statistical analysis of correlation matrices].Annals of the Faculty of Science, University of Toulouse, 29, 77–182.

    Google Scholar 

  6. Constantine, A. G., & Gower, J. C. (1978). Graphical representation of asymmetric matrices.Journal of the Royal Statistical Society, Series C, 27, 297–304.

    Google Scholar 

  7. Coxon, A. P. M. (1982).The user's guide to multidimensional scaling. London: Heinemann Educational Books.

    Google Scholar 

  8. de Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling.Journal of Classification, 5, 163–180.

    Google Scholar 

  9. de Leeuw, J., & Heiser, W. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.),Multivariate analysis-V (pp. 501–522). Amsterdam: North Holland.

    Google Scholar 

  10. de Leeuw, J., & Heiser, W. J. (1982). Theory of multidimensional scaling. In P. R. Krishnaiah & L. N. Kanal (Eds.),Handbook of statistics, Vol. 2 (pp. 285–316). Amsterdam: North Holland.

    Google Scholar 

  11. Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J. R. Barra, F. Brodeau, G. Romer, & B. van Cutsem (Eds.),Recent developments in statistics (pp. 109–123). Amsterdam: North Holland.

    Google Scholar 

  12. Harshman, R. A., Green, P. E., Wind, Y., & Lundy, M. E. (1982). A model for the analysis of asymmetric data in marketing research.Marketing Science, 1, 204–242.

    Google Scholar 

  13. Heiser, W. J. (1987). Joint ordination of species and sites: the unfolding technique. In P. Legendre & L. Legendre (Eds.),Developments in numerical ecology (pp. 189–221). Berlin: Springer Verlag.

    Google Scholar 

  14. Heiser, W. J., & Meulman, J. (1983a). Analyzing rectangular tables by joint and constrained multidimensional scaling.Journal of Econometrics, 22, 139–167.

    Google Scholar 

  15. Heiser, W. J., & Meulman, J. (1983b). Constrained multidimensional scaling, including confirmation.Applied Psychological Measurement, 7, 381–404.

    Google Scholar 

  16. Heiser, W. J., & Stoop, I. (1986).Explicit SMACOF algorithms for individual differences scaling (Research Report RR-86-14). Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  17. Holman, E. W. (1979). Monotonic models for asymmetric proximities.Journal of Mathematical Psychology, 20, 1–15.

    Google Scholar 

  18. Keeren, G., & Baggen, S. (1981). Recognition models of alphanumeric characters.Perception and Psychophysics, 29, 234–246.

    Google Scholar 

  19. Krumhansl, C. L. (1978). Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density.Psychological Review, 84, 445–463.

    Google Scholar 

  20. Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–27.

    Google Scholar 

  21. Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.

    Google Scholar 

  22. Meulman, J., & Heiser, W. J. (1984). Constrained multidimensional scaling: More directions than dimensions. In T. Havránek, Z. Šidák, & M. Novák (Eds.),Compstat 1984, Proceedings in computational statistics (pp. 51–56). Vienna: Physica Verlag.

    Google Scholar 

  23. Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms.Psychometrika, 45, 325–342.

    Google Scholar 

  24. Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and classification.Cognitive Psychology, 23, 94–140.

    Google Scholar 

  25. Okada, A. (1988a). Asymmetric multidimensional scaling of car switching data. In W. Gaul & M. Schader (Eds.),Data, expert knowledge and decisions (pp. 279–290). Berlin: Springer Verlag.

    Google Scholar 

  26. Okada, A. (1988b). An analysis of intergenerational occupational mobility by asymmetric multidimensional scaling.Proceedings of the SMABS 88 Conference (pp. 1–15). Groningen: University of Groningen.

    Google Scholar 

  27. Tobler, W. R., & Wineburg, S. (1971). A Cappadocian speculation.Nature, 231, 39–42.

    Google Scholar 

  28. Weeks, D. G., & Bentler, P. M. (1982). Restricted multidimensional scaling models for asymmetric proximities.Psychometrika, 47, 201–208.

    Google Scholar 

  29. Tversky, A. (1977). Features of similarity.Psychological Review, 84, 327–352.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Willem J. Heiser.

Additional information

The authors wish to thank Ivo van der Lans, John Gower, and the Editor for their comments on an earlier version of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zielman, B., Heiser, W.J. Analysis of asymmetry by a slide-vector. Psychometrika 58, 101–114 (1993). https://doi.org/10.1007/BF02294474

Download citation

Key words

  • slide-vector model
  • unfolding
  • constrained multidimensional scaling
  • asymmetry