Psychometrika

, Volume 57, Issue 4, pp 469–497 | Cite as

Circumplex models for correlation matrices

  • Michael W. Browne
Article

Abstract

Structural models that yield circumplex inequality patterns for the elements of correlation matrices are reviewed. Particular attention is given to a stochastic process defined on the circle proposed by T. W. Anderson. It is shown that the Anderson circumplex contains the Markov Process model for a simplex as a limiting case when a parameter tends to infinity.

Anderson's model is intended for correlation matrices with positive elements. A replacement for Anderson's correlation function that permits negative correlations is suggested. It is shown that the resulting model may be reparametrzed as a factor analysis model with nonlinear constraints on the factor loadings. An unrestricted factor analysis, followed by an appropriate rotation, is employed to obtain parameter estimates. These estimates may be used as initial approximations in an iterative procedure to obtain minimum discrepancy estimates.

Practical applications are reported.

Key words

circumplex covariance structures correlation structures factor analysis simplex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, Y., & Anderson, T. W. (1990). Asymptotic chi-square tests for a large class of factor analysis models.Annals of Statistics, 18, 1453–1463.Google Scholar
  2. Anderson, T. W. (1960). Some stochastic process models for intelligence test scores. In K. J. Arrow, S. Karlin & P. Suppes (Eds.),Mathematical methods in the social sciences (pp. 205–220), Stanford, CA: Stanford University Press.Google Scholar
  3. Anderson, T. W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions.Annals of Statistics, 16, 759–771.Google Scholar
  4. Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables.Psychometrika, 45, 289–308.Google Scholar
  5. Browne, M. W. (1982) Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.Google Scholar
  6. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit.Sociological Methods and Research, 21, 230–258.Google Scholar
  7. Browne, M. W., & Du Toit, S. H. C. (1992). Automated fitting of nonstandard models.Multivariate Behavioral Research, 27, 269–300.Google Scholar
  8. Browne, M. W., & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variate models.British Journal of Mathematical and Statistical Psychology, 14, 193–208.Google Scholar
  9. Beuhring, T., & Cudeck, R. (1985).Development of the culture fair interest inventory: Experimental junior version (Final Report on Project No. 85/1). Pretoria, South Africa: Human Sciences Research Council.Google Scholar
  10. Cudeck, R. (1986). A note on structural models for the circumplex.Psychometrika, 51, 143–147.Google Scholar
  11. Fraser, C., & McDonald, R. P. (1988). COSAN: Covariance structure analysis.Multivariate Behavioral Research, 23, 263–265.Google Scholar
  12. Guttman, L. (1954). A new approach to factor analysis: The radex. In P. F. Lazarsfeld (Ed.),Mathematical thinking in the social sciences (pp. 258–348). New York: Columbia University Press.Google Scholar
  13. Hartmann, W. M. (1992).The CALIS procedure: Extended user's guide. Cary, NC: SAS Institute.Google Scholar
  14. Jöreskog, K. G. (1963).Statistical estimation in factor analysis: A new technique and its foundation. Stockholm: Almqvist & Wiksell.Google Scholar
  15. Jöreskog, K. G. (1970). Estimation and testing of simplex models.British Journal of Mathematical and Statistical Psychology, 23, 121–145.Google Scholar
  16. Jöreskog, K. G. (1974). Analyzing psychological data by structural analysis of covariance matrices. In D. H. Krantz, R. C. Atkinson, R. D. Luce, & P. Suppes (Eds.),Contemporary developments in mathematical psychology (Vol. 2, pp. 1–56). San Francisco: W. H. Freeman.Google Scholar
  17. Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification estimation and testing. In P. R. Krishnaiah (Ed.),Applications of statistics (pp. 265–287). Amsterdam: North Holland.Google Scholar
  18. Jöreskog, K. G., & Sörbom, D. (in press).Lisrel 8 User's Guide. Chicago, IL: Scientific Software.Google Scholar
  19. McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures.British Journal of Mathematical and Statistical Psychology, 37, 234–251.Google Scholar
  20. McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures: Some remarks on applications.British Journal of Mathematical and Statistical Psychology, 33, 161–183.Google Scholar
  21. Schönemann, P. H. (1970). Fitting a simplex symmetrically.Psychometrika, 35, 1–21.Google Scholar
  22. Steiger, J. H., & Lind, J. C. (1980, May).Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.Google Scholar
  23. Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential chi-square statistics.Psychometrika, 50, 253–264.Google Scholar
  24. van den Wollenberg, A. (1978). Nonmetric representation of the radex in its factor pattern parametrization. In S. Shye (Ed.),Theory construction and data analysis in the behavioral sciences (pp. 326–349). San Francisco: Jossey-Bass.Google Scholar
  25. Whittaker, E. T., & Watson, G. N. (1969).A course of modern analysis. Cambridge: Cambridge University Press.Google Scholar
  26. Wiggins, J. S. (1979). A psychological taxonomy of trait descriptive terms.Journal of Personality and Social Psychology, 37, 395–412.Google Scholar
  27. Wiggins, J. S., Steiger, J. H., & Gaelick, L. (1981). Evaluating circumplexity in personality data.Multivariate Behavioral Research, 16, 263–289.Google Scholar
  28. Young, F. W., & Hamer, R. M. (1987).Multidimensional scaling: History, theory and applications. Hillsdale, NJ: Erlbaum.Google Scholar

Copyright information

© The Psychometric Society 1992

Authors and Affiliations

  • Michael W. Browne
    • 1
  1. 1.Department of PsychologyThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations