Advertisement

Psychometrika

, Volume 53, Issue 4, pp 579–583 | Cite as

Explicit candecomp/parafac solutions for a contrived 2 × 2 × 2 array of rank three

  • Jos M. F. ten Berge
  • Henk A. L. Kiers
  • Jan de Leeuw
Notes And Comments

Abstract

Kruskal, Harshman and Lundy have contrived a special 2 × 2 × 2 array to examine formal properties of degenerate Candecomp/Parafac solutions. It is shown that for this array the Candecomp/Parafac loss has an infimum of 1. In addition, the array will be used to challenge the tradition of fitting Indscal and related models by means of the Candecomp/Parafac process.

Key words

Degenerate Parafac Solutions trilinear models component analysis ofn-way arrays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via anN-way generalization of “Eckart-Young” decomposition.Psychometrika, 35, 283–319.Google Scholar
  2. Carroll, J. D., & Pruzansky, S. (1984). The CANDECOMP-CANDELINC family of Models and Methods for Multidimensional Data Analysis. In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P. McDonald (Eds.),Research methods for multimode data analysis (pp. 372–402). New York: Praeger.Google Scholar
  3. Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-mode factor analysis.UCLA Working Papers in Phonetics, 16, 1–84.Google Scholar
  4. Harshman, R. A., & Lundy, M. E. (1984). The PARAFAC model. In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P. McDonald (Eds.),Research methods for multimode data analysis (pp. 122–215). New York: Praeger.Google Scholar
  5. Kruskal, J. B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics.Linear Algebra and its Applications, 18, 95–138.Google Scholar
  6. Kruskal, J. B., Harshman, R. A., & M. E. Lundy (1983). Some relationships between Tucker's three-mode factor analysis and PARAFAC/CANDECOMP. Paper presented at the annual meeting of the Psychometric Society, Los Angeles.Google Scholar
  7. Kruskal, J. B., Harshman, R. A., & Lundy, M. E. (1985). Several mathematical relationships between PARAFAC-CANDECOMP and three-mode factor analysis. Paper presented at the annual meeting of the Classification Society, St. John's, Newfoundland.Google Scholar
  8. Schur, J. (1911). Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen [Comments on the theory of bounded bilinear forms with infinite numbers of variables].Journal für die reine und angewandte Mathematik, 140, 1–28.Google Scholar

Copyright information

© The Psychometric Society 1988

Authors and Affiliations

  • Jos M. F. ten Berge
    • 1
  • Henk A. L. Kiers
    • 1
  • Jan de Leeuw
    • 2
  1. 1.University of GroningenThe Netherlands
  2. 2.University of LeidenThe Netherlands

Personalised recommendations