, Volume 53, Issue 4, pp 495–502 | Cite as

The area between two item characteristic curves

  • Nambury S. Raju


Formulas for computing the exact signed and unsigned areas between two item characteristic curves (ICCs) are presented. It is further shown that when thec parameters are unequal, the area between two ICCs is infinite. The significance of the exact area measures for item bias research is discussed.

Key words

item response theory item bias item characteristic curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm.Psychometrika, 46, 443–459.Google Scholar
  2. Hambleton, R. K., & Swaminathan, H. (1985).Item response theory: Principles and applications. Boston, MA: Kluwer.Nijhoff.Google Scholar
  3. Ironson, G. H., & Subkoviak, M. J. (1979). A comparison of several methods of assessing bias.Journal of Educational Measurement, 16, 209–225.Google Scholar
  4. Linn, R. L., Levine, M. V., Hastings, C. N., & Wardrop, J. L. (1981). An investigation of item bias in a test of reading comprehension.Applied Psychological Measurement, 5, 159–173.Google Scholar
  5. Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.Google Scholar
  6. Oosterloo, S. (1984). Confidence intervals for test information and relative efficiency,Statistica Neerlandica, 38, 37–54.Google Scholar
  7. Rudner, L. M., Geston, P. R., & Knight, D. L. (1980a). Biased item detection techniques.Journal of Educational Statistics, 5, 213–233.Google Scholar
  8. Rudner, L. M., Geston, P. R., & Knight, D. L. (1980b). A Monte Carlo comparison of seven biased item detection techniques.Journal of Educational Measurement, 17, 1–10.Google Scholar
  9. Shepard, L. A. Camilli, G., & Averill, M. (1981). Comparison of procedures for detecting test-item bias with internal and external ability criteria.Journal of Educational Statistics, 6, 317–375.Google Scholar
  10. Shepard, L. A., Camilli, G., & Williams, D. M. (1984). Accounting for statistical artifacts in item bias research.Journal of Educational Statistics, 9, 93–128.Google Scholar
  11. Wright, B. D., & Stone, M. H. (1979).Best test design. Chicago, IL: Mesa.Google Scholar

Copyright information

© The Psychometric Society 1988

Authors and Affiliations

  • Nambury S. Raju
    • 1
  1. 1.Department of PsychologyIllinois Institute of TechnologyChicago

Personalised recommendations