Advertisement

Psychometrika

, Volume 53, Issue 4, pp 455–467 | Cite as

A general model for the analysis of multilevel data

  • Harvey Goldstein
  • Roderick P. McDonald
Article

Abstract

A general model is developed for the analysis of multivariate multilevel data structures. Special cases of the model include repeated measures designs, multiple matrix samples, multilevel latent variable models, multiple time series, and variance and covariance component models.

Key words

complex surveys mixed effects models multivariate linear model repeated measures time series variance component models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M. A., & Longford, N. (1986). Statistical Modelling in School effectiveness studies. (with discussion).Journal of the Royal Statistical Society, Series A, 149, 1–43.Google Scholar
  2. Goldstein, H. (1979).The Design and Analysis of longitudinal Studies. London: Academic Press.Google Scholar
  3. Goldstein, H. (1986a). Multilevel mixed linear model analysis using iterative generalized least squares.Biometrika, 73, 43–56.Google Scholar
  4. Goldstein, H. (1986b). Efficient statistical modelling of longitudinal data.Annals of Human Biology, 13, 129–142.Google Scholar
  5. Goldstein, H., & Silver (in press). D. Holt & F. Smith (Ed.), Multilevel and multivariate models in survey analysis. InThe Analysis of Complex Surveys.Google Scholar
  6. Johnson, S., & Bell, M. (1985). Evaluating and predicting survey efficiency using generalisability theory.Journal of Educational Measurement, 22, 107–120.Google Scholar
  7. Jones, R. G. (1980). Best linear unbiased estimation in repeated surveys.Journal of the Royal Statistical Society, Series B, 42, 221–226.Google Scholar
  8. Jöreskog, K. G. and Sörbom, D. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.Google Scholar
  9. McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures.British Journal of the Mathematical and Statistical Psychology, 37, 234–251.Google Scholar
  10. McCullagh, P., & Nelder, J. A. (1983). Generalized linear models. London: Chapman and Hall.Google Scholar
  11. McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale, NJ: Lawrence Earlbaum.Google Scholar
  12. McDonald, R. P., & Goldstein, H. (in preparation). Applications of multilevel latent variable models.Google Scholar
  13. Shavelson, P., & Webb, R. (1981). Generalisability theory: 1973–1980.British Journal of Mathematical and Statistical Psychology, 34, 133–166.Google Scholar
  14. Strenio, T., Weisberg, H. I., & Bryk, A. S. (1983). Empirical bayes estimation of individual growth curve parameters and their relationship to covariates.Biometrics, 39, 71–86.Google Scholar

Copyright information

© The Psychometric Society 1988

Authors and Affiliations

  • Harvey Goldstein
    • 1
  • Roderick P. McDonald
    • 2
  1. 1.University of London Institute of EducationUK
  2. 2.Macquarie UniversityUK

Personalised recommendations