, Volume 52, Issue 3, pp 431–462 | Cite as

On structural equation modeling with data that are not missing completely at random

  • Bengt Muthén
  • David Kaplan
  • Michael Hollis


A general latent variable model is given which includes the specification of a missing data mechanism. This framework allows for an elucidating discussion of existing general multivariate theory bearing on maximum likelihood estimation with missing data. Here, missing completely at random is not a prerequisite for unbiased estimation in large samples, as when using the traditional listwise or pairwise present data approaches. The theory is connected with old and new results in the area of selection and factorial invariance. It is pointed out that in many applications, maximum likelihood estimation with missing data may be carried out by existing structural equation modeling software, such as LISREL and LISCOMP. Several sets of artifical data are generated within the general model framework. The proposed estimator is compared to the two traditional ones and found superior.

Key words

maximum likelihood ignorability selectivity factor analysis factorial invariance LISREL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some observations are missing.Journal of the American Statistical Association, 52, 200–203.Google Scholar
  2. Beale, E. L., & Little, R. J. A. (1975). Missing values in multivariate analysis.Journal of the Royal Statistical Society, Series B, 37, 129–146.Google Scholar
  3. Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.Psychometrika, 46, 443–459.Google Scholar
  4. Boomsma, A. (1983).On the robustness of the LISREL (maximum likelihood estimation) against small sample size and nonnormality. Unpublished doctoral, dissertation, University of Groningen, Groningen, The Netherlands.Google Scholar
  5. Brown, C. H. (1983). Asymptotic comparison of missing data procedures for estimating factor loadings.Psychometrika, 48, 269–291.Google Scholar
  6. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–38.Google Scholar
  7. Dixon, W. J. (1983). BMDP Statistical Software. Berkeley: University of California Press.Google Scholar
  8. Finkbeiner, C. (1979). Estimation for the multiple factor model when data are missing.Psychometrika, 44, 409–420.Google Scholar
  9. Hartley, H. O., & Hocking, R. R. (1971). The analysis of incomplete data.Biometrics, 14, 174–194.Google Scholar
  10. Hausman, J. A., & Wise, D. A. (1979). Attrition bias in experimental and panel data: The Gary income maintenance experiment.Econometrica, 47, 455–474.Google Scholar
  11. Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models.Annals of Economic and Social Measurement, 5, 475–492.Google Scholar
  12. Johnson, N. L., & Kotz, S. (1972).Distributions in statistics: Continuous multivariate distributions. New York: John Wiley & Sons.Google Scholar
  13. Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.Psychometrika, 34, 183–202.Google Scholar
  14. Jöreskog, K. G. (1971). Simultaneous factor analysis in several populationsPsychometrika, 36, 409–426.Google Scholar
  15. Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In P. R. Krishnaiah (Ed.),Applications of statistics. Amsterdam: North Holland.Google Scholar
  16. Jöreskog, K. G., & Sörbom, D. (1980). Simultaneous analysis of longitudinal data from several cohorts. Research Report 80-5, Department of Statistics, University of Uppsala, Sweden.Google Scholar
  17. Jöreskog, K. G., & Sörbom, D. (1984). LISREL VI; Analysis of linear structural relationships by maximum likelihood and least squares methods. Scientific Software.Google Scholar
  18. Lawley, D. N. (1943–1944). A note on Karl Pearson's selection formulae.Proceedings of the Royal Society Edinburgh, Section A (Mathematics and Physics Section), 62(1), 28–30.Google Scholar
  19. Little, R. J. A. (1982). Models for nonresponse in sample surveys.Journal of the American Statistical Association, 77, 237–250.Google Scholar
  20. Little, R. J. A. (1983). The ignorable case. W. G. Modon, I. Olkin, & D. R. Rubin (Eds.), InIncomplete data in sample surveys, Vol. 2: Theory and bibliographies. New York: Academic Press.Google Scholar
  21. Little, R. J. A. (1985). A note about models for selectivity bias.Econometrica, 53(6), 1469–1474.Google Scholar
  22. Little, R. J. A., & Rubin, D. R. (1987).Statistical analysis with missing data. New York: John Wiley & Sons.Google Scholar
  23. Marini, M. M., Olsen, A. R., & Rubin, D. B. (1980). Maximum likelihood estimation in panel studies with missing data. In K. F. Schuessler (Ed.),Sociological Methodology. San Francisco: Jossey Bass.Google Scholar
  24. Meredith, W. (1964). Notes on factorial invariance.Psychometrika, 29, 177–185.Google Scholar
  25. Muthén, B., 1984. A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators.Psychometrika, 49, 115–132.Google Scholar
  26. Muthén, B. (1985). Moments of the censored and truncated bivariate normal distribution. Submitted for publication.Google Scholar
  27. Muthén, B. (1987).LISCOMP. Analysis of linear structural equations using a comprehensive measurement model. User's guide. Scientific Software.Google Scholar
  28. Muthén, B., & Jöreskog, K. (1983). Selectivity problems in quasi-experimental studies.Evaluation Review, 7, 139–173.Google Scholar
  29. Muthén, B., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables.British Journal of Mathematical and Statistical Psychology, 33, 171–189.Google Scholar
  30. Olsson, U. (1978). Selection bias in confirmatory factor analysis (Department of Statistics Research, Report No. 78-4). Uppsala, Sweden: University of Uppsala.Google Scholar
  31. Pearson, K. (1912). On the general theory of the influence of selection on correlation and variation.Biometrika, 8, 437–443.Google Scholar
  32. Rosenbaum, S. (1961). Moments of a truncated bivariate normal distribution.Journal of the Royal Statistical Society, Series B, 23, 405–408.Google Scholar
  33. Rubin, D. B. (1974). Characterizing the estimation of parameters in incomplete data problems.Journal of the American Statistical Association, 69, 456–474.Google Scholar
  34. Rubin, D. B. (1976). Inference and missing data.Biometrika, 63, 581–592.Google Scholar
  35. Tallis, G. M. (1961). The moment generating function of the truncated multi-normal distribution.Journal of the Royal Statistical Society, Series B, 23, 223–229.Google Scholar
  36. Trawinski, I. M., & Bargmann, R. E. (1964). Maximum likelihood estimation with incomplete multivariate data.Annals of Mathematical Statistics, 35, 647–657.Google Scholar
  37. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and the Gauss-Newton method.Biometrika, 61, 439–447.Google Scholar
  38. Werts, C. E., Rock, D. A., & Grandy, J. (1979). Confirmatory factor analysis applications: Missing data problems and comparison of path models between populations.Multivariate Behavioral Research, 14, 199–213.Google Scholar
  39. Wheaton, B., Muthén, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. In D. R. Heise (Ed.),Sociological methodology, San Francisco: Jossey Bass.Google Scholar

Copyright information

© The Psychometric Society 1987

Authors and Affiliations

  • Bengt Muthén
    • 1
  • David Kaplan
    • 1
  • Michael Hollis
    • 2
  1. 1.Graduate School of EducationUniversity of CaliforniaLos Angeles
  2. 2.Graduate School of Architecture and Urban PlanningUniversity of CaliforniaLos Angeles

Personalised recommendations